
Research Article Journal of the Optical Society of America A 1

Enhancing spatio-chromatic representation with
more-than-three color coding for image description
IVET RAFEGAS1,*, JAVIER VAZQUEZ-CORRAL2, ROBERT BENAVENTE1, MARIA VANRELL1, AND
SUSANA ALVAREZ3

1Computer Vision Center / Computer Science Dept., Universitat Autònoma de Barcelona, Building O, Campus UAB, 08193, Cerdanyola del Vallès, Spain
2Dept. de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Roc Boronat 138, 08018, Barcelona, Spain
3Dept. d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Campus Sescelades, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain
*Corresponding author: Ivet.Rafegas@uab.cat

Compiled April 20, 2017

Extraction of spatio-chromatic features from color images is usually performed independently on each
color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural
images. This correlation can be reduced using color-opponent representations, but the spatial structure
of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow
channels. To overcome these problems, we propose a new color coding that is adapted to the specific con-
tent of each image. Our proposal is based on two steps: (a) setting the number of channels to the number
of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) build-
ing a channel representation that maximizes contrast differences within each color channel (avoiding the
problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the
fact that the number of channels is adapted to the image content. The higher color complexity an image
has, the more channels can be used to represent it. Here we select distinctive colors as the most predomi-
nant in the image, which we call color pivots, and we build the new color coding using these color pivots
as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task.
We show how a generic descriptor improves its performance at the description level when applied on the
MTT coding. © 2017 Optical Society of America

OCIS codes: (010.1690) Color; (100.4994) Pattern recognition, image transforms; (100.2960) Image analysis.
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1. INTRODUCTION

In color images the values of pixels encode the spectral infor-
mation of the light reflected by the surfaces in the scene. These
values are represented in a k-dimensional color space, and a
common formulation of this representation is written as

ρk =
∫

ω
Rk(λ)E(λ)S(λ)dλ, k = 1, 2, 3, (1)

where E(λ) is the illuminant of the scene, S(λ) is the surface
reflectance we are looking at, Rk(λ) is the sensitivity function
of the k-th sensor defining an axis of the color space, and ω
is the visible spectrum usually ranging between 400 and 700
nanometers.

Equation 1 tells us that color in the physical world is math-
ematically modelled as a point-based phenomenon. However,
when we face the problem of solving higher level visual tasks,

such as automatic image classification, to build efficient color
descriptors requires the definition of color in its surrounding
context.This involves the representation of spatio-chromatic in-
formation, which is a difficult problem to deal with. It has been
tackled in previous works from different point of views [1–4];
here we review three main approaches.

The first one, generalized by Weickert [1], is based on con-
sidering color differences as partial derivatives computed on
each RGB color channel. This was firstly addressed by Di Zenzo
[5] who introduced the idea of color tensor. It provided a way
of combining the channel gradients to obtain the orientation
of the color variation in a local spatial neighborhood. Subse-
quently, this idea was further developed by Kass and Witkin
[6] for oriented patterns, and finally established by Weickert [1]
who introduced an additional integration scale which increases
the color-spatial coherence.

A second approach by Mäenpää and Pietikäinen [2] is based
on computing image descriptors in different color spaces and
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using the best space for each specific application. This idea led
van de Sande et al. [3] to study which combinations of color rep-
resentation and descriptor were the most appropriate for recog-
nition tasks. They considered well-known three-dimensional
color spaces such as device-dependent RGB, colorimetric XYZ,
perceptually uniform CIELab and CIELuv, cylindrical HSL and
HSV, and physiologically-based opponent space. These spaces
were combined with common image descriptors, such as SIFT
[7] and GIST [8]. In this direction, Zhang et al. [9] proposed
a biologically-inspired descriptor which extends the 3D color
space with a fourth opponent channel. Recently, Cernadas et
al. [10] searched for the best combination of color spaces, nor-
malization methods and features for texture classification, and
González-Rufino et al. [11] studied different colour-texture fea-
tures to diferentiate cells in histological images.

The third approach is based on the extraction of color blobs
(i.e. homogeneous color regions) directly from trichromatic rep-
resentations. In particular, Alvarez and Vanrell [4] describe an
image in terms of shape and color attributes of the image blobs.
In this case the blobs are obtained from each channel of the op-
ponent space by using Lindeberg’s blob detector [12]. Khanina
et al. [13, 14] adapted the scale-space technique for color images
and proposed to use the Hessian matrix. Ming and Ma [15]
proposed a weighted multi-scale blob detector using a hybrid
operator which combines the Laplacian and the determinant of
the Hessian. The results of this operator are later processed by
a blob filter that includes a color-based Förstner operator and a
hue-based histogram.

In all the above approaches, a variety of descriptors based
on local spatial features have been defined over different three-
dimensional color representations,mostly on RGB or opponent
color spaces. Here, we hypothesize that the performance of
these descriptors for high level visual tasks, such as image clas-
sification, can be improved by using color spaces that boost
the appearance of the spatio-chromatic image structure. Boost-
ing can be achieved by overcoming two main drawbacks: (a)
inter-channel correlation of RGB spaces, and (b) lack of contrast
in color-homogeneous regions of opponent spaces. These two
effects can be seen in Fig. 1, where important edges between
regions of different colors (orange-green edges) present clearer
differences in color-opponent spaces with respect to the inter-
channel correlated edges in RGB. However spatial structure
appearing inside homogeneous-color regions is more contrasted
in RGB than in opponent channels, where minor details (across
the green or orange area) are lost.

To prove the previous hypothesis, in this paper we propose
a new color representation that achieves decorrelation and en-
hancement of local color contrast based on the following ideas:
(a) using more than three channels if required, i.e. adapting
color coding to the content of each specific image; (b) enhancing
local contrast inside channels by maximizing the contrast with
respect to the most representative color of each channel. Follow-
ing previous ideas, we compute a multi-channel representation
of the spatio-chromatic image structure in a two-step process.
First, we select the set of distinctive image colors, denoted as
pivots, which capture the most relevant colors for each specific
image. Second, the value of a pixel in each new channel is com-
puted by the similarity between its trichromatic color and the
corresponding pivot of the channel. We name the proposed
representation more-than-three color coding, since the number of
distinctive colors is not restricted to the usual three (although
in some cases it can be three, or even two). In general the more
color diversity the image has, the more number of color channels

our representation has. We will denote our approach as MTT
(More-Than-Three) from now on.

To test the proposed MTT coding, we use the semi-joint tex-
ton descriptor (STD) introduced by Alvarez and Vanrell [4]. This
descriptor, based on the Texton theory by Julesz and Bergen [16],
decomposes the image into minimal color regions (blobs). These
blobs are described in terms of their color and shape attributes,
which are not conditioned by the image space. This indepen-
dence from the space makes this descriptor the most adequate to
be directly applied to the new color representation without any
additional computation. We report our results on two different
experiments. Firstly, we compare the representation capabili-
ties between MTT and two trichromatic representations, namely
RGB and opponent space, concluding that MTT allows a more
accurate representation of the image content thanks to the prop-
erties of presenting lower correlation and higher local contrast,
that allows to get a more careful blob-based representation over
the full image area. Secondly, we perform an experiment on
scene categorization showing that our approach gets a higher
accuracy, outperforming state-of-the art results computed at the
descriptor level.

Although we show a good performance with the proposed
approach, two criticisms to our initial hypothesis may arise. The
first one refers to the increase in the number of color channels
compared to usual representations. However, the use of extra
channels can be linked to recent findings about the existence of
multiple hue maps in the human visual system [17, 18]. These
hue maps show selectivity to more colors than the primaries en-
coded in three-dimensional opponent spaces.1 The second criti-
cism refers to tuning to each specific image content. This tuning
may complicate the description of images for comparison pur-
poses. However, it assures obtaining a better spatio-chromatic
representation for image regions that can otherwise be lost with
a fixed coding as it will be shown in the experiments.

The rest of the paper is organized as follows. In Section 2 we
detail our new representation. In Section 3 we define the experi-
mental setup and present the results obtained by our approach
on the experiments. Finally, in Section 4, the conclusions of the
paper are discussed.

2. MORE-THAN-THREE COLOR CODING (MTT)

Our goal is to define a color representation which has a channel
for each distinctive color in the image. By distinctive colors
we mean those that play an important role in understanding
the image content. We use as many channels as distinctive
colors an image has. For a given channel we assign, (i) the
maximum value to pixels of the distinctive color, and (ii) a value
inversely proportional to the distance to such distinctive color to
the rest of pixels. In this way, in each channel, we are maximizing
the representation of a distinctive color preserving its spatial
coherence. Since all the distinctive colors have their own channel,
we ensure that all the important color regions of the image will
be fully represented in at least one channel, and that all the
region details will be maximally contrasted in its channel. We
denote the distinctive color of a channel as its pivot.

Let us note here that the proposed representation is based
on the content of each image. Color coding for each image is
dependent on the color pivots computed from that particular
image. For instance, an image of a forest with four distinctive
colors could be represented by a channel for green leaves, a
channel for brown tree trunks, another for blue sky, and a last
one for white clouds. Meanwhile, an image of a beach could
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Fig. 1. Visualization of high RGB correlation and low local-contrast of color opponent channels for a single row of a natural image.
(a) The analysed row is highlighted in yellow. (b) and (c) Profiles of the image row for RGB and the opponent space, respectively.

be represented by 3 channels with all the details of yellowish
sand on one channel, deep blue of the sea on a second one and
light blue of the sky on a third. We want to remark that this
representation has not a fixed dimensionality, but it varies from
one to any number representing the color complexity of a specific
image scene. Nonetheless, we can state that this dimensionality
usually converges to a moderate number since natural images
are typically dominated by only a few colors [19].

The process to obtain the proposed MTT coding can be di-
vided in two parts: (a) the selection of pivots (Section 2.A) and,
(b) the definition of the channel values (Section 2.B). A general
scheme of this process is summarized in Fig. 2.

Fig. 2. Pipeline of the method. From the original image, we
extract a set of ridges corresponding to the most distinctive
colors and then we select a color pivot for each ridge. These
color pivots are the basis to generate the proposed more-than-
three (MTT) color coding of the image, which results on as
many channels as distinctive colors the image has.

A. Selecting color pivots
As we have introduced before, color pivots must be the most
distinctive colors of the image. In this work we propose to
interpret that distinctive colors are the most predominant ones
in the image and we find them using the Ridge-based Analysis of
Distributions (RAD) technique [20]. The RAD algorithm groups
image colors according to the ridges of the histogram. Ridges are
computed by extracting all the local maxima of the histogram
and connecting those which are close to each other.

Although other existing approaches could be used instead,
we selected RAD because it has been proved to fulfill two prop-
erties that are of clear interest to our method. First, the RAD
algorithm is invariant to some color distortions as ridges extract
all the histogram maxima plus all their nearby similar values,
therefore being robust to small changes like the ones caused by
noise. Second, all the points in a ridge are connected, which
means that the ridge representation is robust to shadows and
highlights, since both shadow and non-shadow regions of an
object are included in the same ridge. Thus, small color distor-
tions will not affect our method, since they will be captured by
the ridge algorithm obtaining always a single color pivot for
each dominant color. These effects are not captured by classical
clustering methods (e.g. k-means) which group colors mainly
based on colour similarity, while RAD allows joining colors from
different parts of the histogram in the same ridge, if there is a se-
quence of local maxima that can be connected. In the next lines
we briefly summarize how predominant colors are extracted
with this method.

Let us define an image I as a M× d matrix where M repre-
sents the number of pixels in the image and d is the dimension of
the color space (RGB, Lab, etc.). In RAD, the first step is to look
for local maxima on the color histogram H(I) with the multilocal
creaseness measure of Lopez et al. [21, 22] defined as

κ(x) = − d
r

r

∑
k=1

ω̄t(xk) · n(xk), (2)

where x is a bin of the histogram H(I), xk is the k-th neighbor
of x on an r-connected neighborhood, ω̄(xk) and n(xk) are the
dominant gradient orientation and the unit normal vector to
the discrete boundary of the neighborhood at each boundary
site xk, respectively, and d is the dimension of the histogram
space. All the mathematical details can be found in [22]. In
our implementation we use the RGB color space (i.e. d = 3)
quantized in 30 × 30 × 30 equally spaced bins. We use r =
6 to consider a 6-connected neighborhood as in the original
implementation of RAD [20].

The local maxima of κ(·) which are close in the histogram are
connected by following the lines of shallowest gradient descent
until a flat region is reached. The sets of points contained in
each of these lines are called ridges of the histogram and will be
denoted by

C = {c1, · · · , cn}, (3)

where ci is a color value from the image. For a particular image,
the set of all the ridges extracted applying RAD will be denoted
by {CI

i }i=1:L and they will represent the most predominant col-
ors of the image I.
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Let us now focus on searching for the color pivots. For a
particular ridge CI

i of an image I, its color pivot, ρI
i , is defined

as the one that fulfills

ρI
i = argmaxc∈CI

i
H(c), (4)

that is, ρI
i is the color value of ridge CI

i that has maximum value
in the image histogram H(·).

B. Pivot-based encoding

After selecting the set of color pivots {ρI
i }i=1:L of image I, we

define the new spatio-chromatic representation as the M × L
matrix obtained using the similarity metric given by

MTT I
j,i = max

k∈1:M
(‖ρI

i − Ik,·‖m)− ‖ρ
I
i − Ij,·‖m

∝ 1−
‖ρI

i − Ij,·‖m

maxk∈1:M ‖ρI
i − Ik,·‖m

, (5)

where Ij,· represents the vector consisting of the 3 color com-
ponents of pixel j from the original image and ‖ · ‖m represents
the m-Minkowski norm. In this work we have used m = 2 that
is equivalent to the Euclidean distance, although other distances,
such as the perceptual CIEDE2000 [23], could also be used.

The computational complexity of our approach is linear in the
number of pixels of the image for a fixed number of bins and a
given dimension of the histogram space (in our case, 30× 30× 30
and 3 respectively). Computing the MTT representation for an
image of 768× 768 pixels takes on average 888ms, from which
722ms correspond to the pivot selection (including the time of
the RAD method) and 166ms to the pivot-based encoding step.
These computations were done on a Intel Xeon CPU E5-1620
processor.

In Fig. 3 we present the MTT representations of a set of
images, and we compare them to the RGB and the opponent
representations. We can see that each MTT channel enhances
different parts of the image. For example, in the first row, MTT
channels emphasize different parts of the postbox. The base and
the aperture are represented in the black channel, the box is in
the red channel, the notice plate and the background trees are
mainly enhanced on the gray channel, the grass is represented on
the green channel, and the sky appears in the light-gray channel.
We can appreciate how color information is less correlated on
these channels than in the RGB channels (please, focus on the
green and blue channels of RGB) and that opponent channels
present less contrast between the different objects of the image.
Similarly, in the second row, the different parts of the boy’s
clothes (in red, blue, and orange channels), the snowman (in the
white channel), and the background (in the gray channel) are all
enhanced in different channels. An analogous analysis can be
performed in the rest of images.

Notice that since our MTT representation is content-based we
obtain a different number of channels on each image depending
on the variety of colors in it. In the examples, the first two
images have five channels whereas the last one showing a purple
flower on a green background has only two channels. Notice
also that the MTT channels represent different colors for each
image. In some cases, as in the first-row image, two shades of
the same color can be represented in different channels if they
are sufficiently different from each other (in this example, gray
and light gray).

Finally, let us explain how we can derive an inverse transform
to the original space. By the construction of our space we know

that for each channel: i) the color selected as a pivot is always a
trichromatic value appearing in the image. Therefore, the maxi-
mum value of the channel is equal to the maximum difference
between the color of the pivot and the color of a certain pixel in
the image; and ii) there exists a pixel in the image (the one with
its color at a further distance of the pivot) whose representation
in the channel is 0. Mathematically,

max
k∈1:M

MTT I
k,i = max

k∈1:M
‖ρi − Ik,·‖m. (6)

mink∈1:M MTT I
k,i = 0. (7)

These two properties, allow us to invert Eq.5 as follows

‖ρI
i − Ij,·‖m = max

k∈1:M
MTT I

k,i −MTT I
j,i. (8)

Then, given MTT I
j,i and ρi this last equation defines a surface

(an sphere if m = 2) of possible values for each Ij,·. Therefore,
to recover the original image we just need to know the value
of three of the pivots that are linearly independent, and use
trilateration. Then, our recovered image will be given by values
Ij,·, that fulfill Eq. 8 for three values of i.

C. Illumination invariance
As explained in the introduction, pixel values of an image de-
pend on the reflectance of the objects, the camera sensors, and
the illumination of the scene. Therefore, when the illumination
of the scene changes (which is usual in real images), pixel values
also change thus hindering the performance of computer vision
algorithms. Different methods have been proposed to counter-
effect the illuminant variability, either by discounting the illu-
minant [24] or by performing some form of color normalization
[25]. In this section, we show that our image representation can
be directly used as an invariant to the illumination (therefore
avoiding the need of further processing) when computed on the
logRGB color space.

In RGB space, the change in illumination between two images
of the same scene can be approximately modeled by a single
scaling factor on each channel (i.e. the Von Kries coefficient law
[26]), either directly [27] or by applying the spectral sharpening
technique [28, 29]. This is, given an image I1, an image I2 of the
same scene under a different illuminant can be defined as

I2 = D1,2 I1, (9)

where D1,2 is a 3 × 3 diagonal matrix containing the scaling
factors for each RGB channel, therefore transforming the colors
under the first illuminant to those under the second illuminant.
If we apply a logarithm operation to the RGB space, the previous
equation can be rewritten as

log(I2) =
[
d1,2, · · · , d1,2

]
+ log(I1), (10)

where d1,2 =
[
log(D1,2

11 ), log(D1,2
22 ), log(D1,2

33 )
]T

. This is the case

since D1,2 is a diagonal matrix and thus the channels of I1 are
treated independently. Equation 10 tells us that an illumina-
tion change can be modeled by a translation in logRGB space.
Therefore, for any color value x ∈ logRGB we have that

H2(x) = H1(x + d1,2), (11)

where H1(·) and H2(·) denote the histograms of log(I1) and
log(I2) respectively. Consequently, following Section 2.A, we
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(a) (b) (c) (d)

Fig. 3. Examples of MTT representation for several images and comparison to the RGB and opponent representations. (a) Original
images. (b) RGB channels. (c) Opponent channels. (d) MTT channels. On channel images, values are represented on grayscale
(black=0, white=1). The color boxes under channel images show the correspondence with RGB, opponent, and MTT channels. The
proposed MTT represents images with a variable number of channels depending on the number of distinctive colors the image has.

have that the color pivots of log(I1) and log(I2) are also related
by

ρ
log(I2)
i = ρ

log(I1)
i + d1,2. (12)

From Eq. 12 and Eq. 5 we have

MTTlog(I1)
j,i =

max
k∈1:M

(‖ρlog(I1)
i − log(I1

k,·)‖m)− ‖ρ
log(I1)
i − log(I1

j,·)))‖m
=

max
k∈1:M

(‖ρlog(I2)
i − d1,2 − (log(I2

k,·)− d1,2)‖m)−

‖ρlog(I2)
i − d1,2 − (log(I2

j,·)− d1,2)‖
m
=

max
k∈1:M

(‖ρlog(I2)
i − log(I2

k,·)‖m)− ‖ρ
log(I2)
i − log(I2

j,·)‖m =

= MTTlog(I2)
j,i .

(13)

Therefore, our representation computed on logRGB space is
approximately invariant to the illuminant. An example of this
invariance is shown in Fig. 4, where we can see, from left to right,
the original RGB image, the results of the MTT representation
fixing the number of channels to 3, and a visualization of the
MTT channels concatenated as an RGB image. It is clear that the
MTT channels are very similar for all the images, making the
RGB-like visualization stable under illuminant changes.

3. EXPERIMENTS AND RESULTS

As presented in the previous section, MTT provides a new color
representation which is based on the specific content of each
image. In this section we show its power to build generic color
image descriptors. The evaluation is performed in two steps.

Fig. 4. Example of the approximate illuminant invariance of
our representation. From left to right: original RGB image, the
three MTT channels, and the MTT representation visualized
as a RGB image. Illuminants in the original RGB images are
(from top to bottom) an approximate D65 illuminant, an illu-
minant with CCT = 3500K plus a blue filter, an illuminant
with CCT = 4700K, an approximate D65 illuminant plus a
blue filter, and a fluorescent light.

We firstly evaluate how MTT overcomes the problems of RGB
and opponent spaces to encode spatio-chromatic information of
images. We evaluate this improvement in terms of the channels
correlation and local contrast, and also showing how MTT rep-
resentation improves the ability of an specific image descriptor,
and secondly we evaluate how MTT increases the performance
of a descriptor in a scene classification task.

The evaluation is performed in two steps. We firstly evaluate
how MTT overcomes the problems of RGB and opponent spaces
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to encode spatio-chromatic information of images. We evaluate
this improvement in terms of the channels correlation and local
contrast, and also showing how MTT representation improves
the ability of an specific image descriptor.

Considering the problem of generic image description, the
comparison between descriptors of different images built on the
MTT representation requires to be adapted to any number of
channels. To overcome this problem we use a the Semi-Joint Tex-
ton descriptor (STD) [4] and a variant of it, both are explained on
the next subsection. This descriptor gives an intermediate-level
representation in terms of image blobs, i.e. color-homogeneous
convex regions, that is computed regardless of the color space.

Taking into account the previous considerations, we organize
this experimental section in four subsections. Firstly, we intro-
duce the image descriptor used in the experiments. Secondly, we
provide the details of the setup used in the experiments, which
are fully explained in the remaining two subsections.

A. Image description: Semi-joint Texton Descriptor

The Semi-joint Texton Descriptor (STD) introduced by Alvarez
and Vanrell in [4] describes an image in terms of shape and color
attributes of the image blobs. STD can be computed on any color
space and we show that the performance of this descriptor on
scene recognition is improved when MTT is used instead of RGB
or the opponent representation. An interesting property of this
descriptor is that the attributes of the blobs it uses do not depend
on the input color space where the blobs are initially detected.
Due to this property, the descriptions of two images can be
compared independently of the color representation where the
blob detection is performed, even if their representations have
different number of channels.

The STD algorithm starts detecting the blobs of an image by
applying a multi-scale Laplacian in each separate channel of
the image representation of choice. From the blobs detected in
all the channels, color and shape attributes are extracted. Then
the STD is defined as a combination of shape (STDS) and color
(STDC) descriptors of image blob’s attributes (see sections 3.A.1
and 3.A.2):

STD = [STDS STDC]. (14)

A.1. Shape descriptor

The shape descriptor is a histogram of blobs’ shape attributes.
For each detected blob, shape attributes, namely area, orienta-
tion, and aspect ratio, are obtained independently of the color
channel where the blob was detected. Then, all blobs’ attributes
are quantized in a three-dimensional blob-shape space in order
to compute the histogram. In this histogram each bin represents
a visual word of the universal shape vocabulary defined by the
quantization of the blob-shape space.

A.2. Color descriptor

The color descriptor is a histogram of blobs’ color attributes. The
histogram is computed in the HSI color space, where blobs’ color
attributes are quantized. In this histogram each bin represents
a visual word of the universal color vocabulary defined by the
quantization of the color space (see figure 9 in [4]).

In this paper, we also use a variant of the color descriptor
defined in [30]. This approach is based on the color-naming
model of Benavente et al. [31], which categorizes any image pixel
p in one of the 11 basic colors defined by Berlin and Kay [32]
(i.e. red, green, blue, yellow, orange, brown, pink, purple, white,

gray, and black). Such categorization is done by means of an 11-
dimensional membership vector µ(p), where each component
µi(p) can be interpreted as the probability of color p to belong to
a particular color Ci. Pixels are assigned to the color term with
highest membership, which is then backed up with a modifier
related to its lightness (i.e. dark, medium, or light). Using this
color-naming representation the quantization of the color space
is more perceptual than the original quantization [4], where just
an equally-spaced division of the space was used.

To avoid confusions, from now on we denote by STDOR the
original descriptor defined in [4] (shape descriptor plus color
descriptor on HSI), and by STDCN the variant which uses color
naming for the color description [30] (i.e. STDCN is formed by
the shape descriptor and the color descriptor based on color
names). Figure 5 shows a graphical representation of the two
STD implementations used in this work.

A.3. Adding spatial layout information

The STD descriptor is a global first-order statistic of blob at-
tributes. For scene recognition the insertion of the spatial layout
is a must since similar color areas can represent different things
depending on their location in the image. For example, medium
and large blue blobs can represent either water (e.g. a lake or
the sea) or sky; in this sense, adding their spatial location will
help to distinguish if they represent water (usually located at
the bottom images) or sky (usually located at the top).

Hence, we add the spatial component similarly to how it is
added in the GIST descriptor [8]. Given an image I we decom-
pose it in a set of non-overlapping sub-images I1, · · · , Ik, which
are obtained by dividing each of the image dimensions by a
particular natural number (usually 2, 3, or 4). Then, we compute
the descriptor for each of the sub-images and concatenate them,
obtaining a final descriptor of the form

STD = [STDS1 · · · STDSk STDC1 · · · STDCk ], (15)

where STDSi and STDCi represent the shape and color descrip-
tors of sub-image Ii.

B. Experimental setup
In our experiments, the maximum number of channels for the
MTT representation is set to L = 8. This value was experimen-
tally found by testing values from L = 2 to L = 11. Results
gradually improve as the value of L increases, but for L > 8
the improvement is not significant. In case that more than 8
ridges are extracted from an image (see Section 2.A), the 8 ridges
that represent the largest areas of the image (computed via a
watershed in the color histogram of the image) are selected.

To obtain the shape descriptor, we use the follow-
ing quantization of the shape space: 8 orientations
(0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦), 7 scales (area), and
3 aspect ratio values (isotropic, elliptical, and highly-elongated).
Isotropic blobs are assigned to orientation 0◦. Thus the shape
descriptor has dimension 119 = (8 orientations × 7 scales ×
2 aspect ratios) + 7 (one bin per scale for isotropic blobs).

In the case of the color descriptor we have used the two
configurations explained in Section 3.A.2. For STDOR, the HSI
color space is quantized in 16 bins for H, 4 for S, and 5 for I,
making a size of the color descriptor of 320 bins. For STDCN ,
color is defined in terms of 11 names and 3 modifiers, which
gives a size of 33 bins for the color descriptor. Therefore, the
total size of STDOR is 119+ 320 = 439 bins, whereas STDCN has
a the total size is 119 + 33 = 152 bins. If spatial decomposition
is used (see Section 3.A.3), these values should be multiplied by
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Fig. 5. Diagram of the process to obtain STDOR [4] and STDCN[30]. Blobs are detected on each channel of the chosen color repre-
sentation and shape attributes are computed to generate the shape descriptor STDS. The color descriptor STDC is computed either
on the HSI color space or using color names.

the number of sub-images considered to obtain the final size of
the descriptor.

Finally, the dataset used in all the experiments is the dataset
of scenes created by Oliva and Torralba [8], which contains
2688 images of 256× 256 pixels from 8 categories: coast, forest,
highway, inside city, mountain, open country, street and tall
building.

C. Experiment 1: Analysis of MTT properties

In this first experiment we analyze the properties of the pro-
posed color representation. As we mentioned in the introduc-
tion, the main problems of usual color spaces to encode the
spatio-chromatic image structure are due to the high correlation
between channel and the lack of local contrast for specific colors.
These two properties are inherent to the channel-based repre-
sentation derived from the sensor that reduces the capability to
represent all the image details. Even when we transform to an
opponent representation, the lack of contrast of the new chro-
maticity channels does not allow representing all the details of
areas with homogeneous chromaticity. Considering these two
aspects, in this experiment we have computed the inter-channel
correlation and the channel’s local contrast for RGB, normalized
opponent space 2 (nOPP), and the MTT representation. have also
considered the space defined by the three eigenvectors obtained
by PCA on the RGB space.

For a given image, the inter-channel correlation has been
computed as the average of the minimum pairwise-channel
correlation3 obtain the local contrast, we use the method defined
by Haun and Peli [33].

The results are shown in Table 1. We can see that the MTT
representation presents a combined result of low inter-channel
correlation and high local contrast. If these results are compared
to the ones obtained by the opponent space, we see that MTT
obtains better results in both measures. PCA presents the lowest
correlation at the cost of also obtaining the lowest local contrast.
Comparing to the RGB space, local contrast of RGB channels is
slightly higher than in MTT, but in RGB the correlation between
its channels is considerably higher than in MTT. We also looked
at the behavior of local contrast when considering only the three

Table 1. Correlation among the different channels and mean
local contrast for the different color spaces for all the images
on the Oliva and Torralba dataset.

Correlation Local contrast

RGB 0.82 (± 0.18) 20.47 (± 10.21)

nOPP 0.30 (± 0.20) 10.75 (± 7.48)

PCA 0.00 (± 0.02) 9.55 (± 8.26)

MTT 0.25 (± 0.18) 19.24 (± 10.76)

MTT channels that have higher local contrast for each image.
In this case, the result for MTT is over 10% higher than in RGB,
therefore showing that a subset of the MTT channels presents
higher local correlation than any other representation of the
same dimension.

Let us now show how the better results of MTT in correlation
and local contrast allow us for a better image description. To this
end, we detect the blobs in each image of the dataset (using the
blob descriptor encoded in the STD descriptor) on different color
representations to analyze how well these blobs describe the
content of the image. We assume that, in general, the most area
covered by detected blobs, the best the overall appearance of the
image will be described. Thus, an image can be reconstructed by
plotting their blobs at the locations where they were detected,
and filling them with their color attribute. Figure 6 shows a
visual comparison between the blobs detected on the proposed
MTT, the normalized opponent color space, and the RGB space.
We can appreciate that on MTT more parts of the image are
described, the details are better represented and the overall
structure of the original image (i.e. the gist of the image) is more
appreciable.

To give a quantitative analysis of the results in the previous
figure, in Table 2 we show the percentages of covered area by
blobs detected on RGB, the opponent space and MTT. As it
can be seen, the percentage of area covered by blobs detected
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 6. Blobs detected on different color representations. Each row corresponds to one of the categories of the dataset. (a), (e) and
(i) Original images. (b), (f) and (j) Blobs detected using the RGB color space. (c), (g) and (k) Blobs detected using the normalized
opponent space. (d), (h) and (l) Blobs detected using the MTT representation.

on MTT is higher than the ones obtained on the other color
representations. This increase can be found in all the categories
of the dataset. For example, in the forest category the increase
is over 13% with respect to RGB. This could be due to the fact
that images from this category have low contrast and similar
hues, which makes that areas of similar color can not be detected
as different regions in the opponent or the RGB channels. By
contrast, MTT is more able to represent different shades of the
same hue in different channels which facilitates the posterior
blob detection.

Finally, let us analyze how our better detection of the gist
of the image translates to the shape descriptor part STDS. To
this end, in Fig. 7 we compare the distributions of detected
blobs from an image using opponent and MTT representations.
Distributions are displayed as 3D histograms where one of the
axes represents orientation, another represents aspect ratio and
area jointly, and the third represents the number of blobs. We
can appreciate that each visual word in STDS clusters blobs
with a similar visual appearance (i.e similar area, orientation,
and aspect ratio). We note that STDS on the MTT channels de-
tects more blobs than on the opponent space, specially on those
bins where some blobs are already detected on the opponent
space. Moreover, MTT allows to detect blobs with attributes
corresponding to bins where only a few blobs are detected on
the opponent channels. These extra blobs detected on the MTT

Table 2. Percentages of covered area for each category on the
Oliva and Torralba dataset using STDOR descriptor on RGB,
normalized opponent (nOPP) and MTT channels.

Category RGB nOPP MTT

Coast 85.52% 78.41% 96.10%

Forest 84.61% 83.36% 97.95%

Highway 79.32% 69.03% 91.52%

Inside city 90.01% 85.06% 98.75%

Mountain 85.28% 82.44% 96.24%

Open country 90.93% 87.30% 97.71%

Street 81.74% 73.94% 95.06%

Tall building 87.33% 83.65% 96.43%

All 85.94% 80.99% 96.38%

representation are mainly found at large uniform areas, which
explains why MTT is more effective representing the overall
structures of the image as we have seen in Figure 6.



Research Article Journal of the Optical Society of America A 9

(a) (b) (c)

Fig. 7. Comparison of the shape descriptors of an image (a) obtained on the opponent space (b) and on the MTT representation (c).
Shape descriptors are shown as a 3D histogram where each bin clusters detected blobs with similar area, orientation and aspect
ratio. On the aspect ratio and area axis, ’1’ corresponds to isotropic blobs, ’2’ to elliptical blobs, and ’3’ to highly-elongated blobs.
Bins corresponding to different areas are plotted in different colors. Area increases along the axis.

D. Experiment 2: Scene recognition

In this experiment we test the efficiency of the new representa-
tion when it is used to compute the STD for scene recognition
tasks. We first compare different spatial decompositions to de-
termine the best configuration of STD and then we compare the
results to the state of the art on the database of Oliva and Torralba
[8]. The experiments are done following the same methodology
used in [34]. A linear support vector machine is trained and
tested on a randomly selected split of 600 images for training
and 120 images for testing. This procedure is repeated 10 times
and results are averaged.

D.1. Analysis of spatial decomposition

As stated in Section 3.A.3, the inclusion of spatial information on
STD can improve its results for general tasks in computer vision.
Spatial information is a building part in some image descriptors,
such as GIST [8], but it should not be confused with the idea
of spatial pyramids [35], where the descriptor is computed on
regions of different sizes and are later combined into a single
descriptor.

To analyze the relationship between the number of sub-
images used and the accuracy achieved, we have computed
the results of the original implementation of STD (STDOR) and
STD using color names (STDCN) on different color spaces, and
considering the whole image (no spatial decomposition) and
different number of sub-images (4, 9, and 16). According to these
results (see Fig. 8), the inclusion of spatial information in the
descriptor by dividing the image into 4 sub-images increases the
accuracy by at least 4% in all cases. Considering 9 sub-images
still increases the accuracy but the increase is not as remarkable
as in the previous case. After that, the increase is not significant
or there is even a slight decrease in accuracy in the case of the
descriptors computed on RGB.

D.2. Comparison to state of the art

Given the results of the previous section, we use 4 sub-images
to compute STDOR and STDCN because this configuration pro-
vides us with good performance and the size of the descriptor
does not increase dramatically (1756 for STDOR and 608 for
STDCN). Now, these results are compared to the ones reported
in [34] for three well-known descriptors: SIFT [7], GIST [8], and

Fig. 8. Accuracy on scene recognition in terms of the number
of sub-images used to compute STD descriptors on different
color spaces.

HMAX [36] and are presented in Table 3. Rows 1 to 3 summa-
rize the results of Brown and Süsstrunk in [34]. We only report
the color space where each descriptor achieved the best results.
The highest accuracy was obtained with GIST on the opponent
space (without normalization). Rows 4 to 6 and 7 to 9 show the
performance of STDOR and STDCN , respectively. In both cases,
the descriptor is computed on three color representations (RGB,
normalized opponent space, and MTT).

Analyzing the results, the use of MTT on both STD descrip-
tors provides with an improvement on the accuracy of about
4% and 4.5% comparing to RGB and the normalized opponent
space, respectively. This result can also be observed in Fig. 8
where for any number of sub-images, any descriptor computed
on MTT overcomes the same descriptor computed on RGB or on
the normalized opponent space.

Moreover, we computed the Wilcoxon test with the hypothe-
sis that the results obtained with GIST on the opponent space
and with STDCN on MTT in the 10 trials of the experiments be-
longed to the same distribution. We obtained a p-value of 0.0020
with a significance level of 5%. Therefore, we can reject our
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Table 3. Accuracy (%) and standard deviation computed
over 10 trials on the scene recognition experiment. Results
for HMAX, GIST, and SIFT were extracted from [34]. In paren-
thesis we show the color space used.

Descriptor Accuracy (%)

SIFT(nOPP) 69.6 (± 2.5)

HMAX(RGB) 74.0 (± 4.4)

GIST(OPP) 77.8 (± 3.4)

STDOR(nOPP) 75.7 (± 3.5)

STDOR(RGB) 76.3 (± 3.5)

STDOR(MTT) 80.1 (± 3.6)

STDCN(nOPP) 78.6 (± 2.5)

STDCN(RGB) 79.1 (± 4.6)

STDCN(MTT) 83.0 (± 3.0)

null hypothesis and conclude that the improvement obtained
by STDCN on MTT over GIST on the opponent space are statis-
tically significant. Therefore, we can conclude that the use of
MTT improves the results of the STD descriptors with respect
to the use of RGB or the normalized opponent space. Further-
more, both STDOR and STDCN computed on MTT outperform
GIST results reported in [34]. Let us remark here that our best
result (STDCN on MTT channels with an accuracy of 83.0%) is
obtained with a descriptor composed by 608 bins, while the GIST
descriptor has a size of 960 bins.

Moving to the analysis by category, Fig. 9 shows the confu-
sion matrix of our best result (STDCN on MTT). Each cell of the
matrix shows the percentage of images of a class (row) classified
as each of the classes (columns). From the matrix we can see
that the category with higher accuracy is forest. This could be
expected since this category shows a low intraclass variability.
By contrast, open country and coast present a high confusion
(e.g. 14% of coast images are classified as open country). Sim-
ilarly, city and tall building are two categories with a certain
confusion (8% of images of each class classified in the other
class). Both cases can be explained by the fact that images in
these pairs of categories show high similarities; for example,
open country has many images of lakes and rivers that can be
confused with images of coast, and city category contains many
images of buildings combined with other elements such as cars
and pedestrians that can be confused with images from the tall
building category.

4. CONCLUSIONS

The main novelty of this work is the creation of a new color rep-
resentation based on the specific content of the image. With this
approach we aim an image color coding that enhances spatio-
chromatic information and reduces inter-channel correlation.
The goal is achieved in a two-step process. Firstly, we set the
number of channels used in MTT with the number of relevant
colors the image has, defined as pivots. Secondly, we build
individual channel representation that maximizes contrast dif-
ferences using a similarity metric with respect to the color pivot
related to each channel.

The proposed approach presents some clear advantages:

Fig. 9. Mean confusion matrix of the scene recognition exper-
iment on Oliva and Torralba dataset using STDCN computed
on the MTT representation. Greenish cells correspond to the
results with accuracy higher than 70%, while reddish cells cor-
respond to the misclassified results having a percentage above
5%.

• Represents images according to its own color complexity,
this is with more than three dimensions if required. As
each dominant color is mostly represented in one of the
dimensions, our approach shows more ability to capture
the image details.

• Increases the local contrast and reduces the correlation of
the resulting channels, which plays a crucial role in several
tasks such as edge and blob detection, segmentation, and
recognition.

• Presents illuminant invariance properties if it is built onto a
log space. This can be an important benefit, essentially in
recognition tasks.

• Increases performance when applied to build color image
description for scene classification. This increase is mainly
due to the improvement in the blob detection step of the
color descriptor.

To prove these advantages we have performed two experi-
ments. First, a qualitative experiment to show the performance
of the MTT representation in a blob detection task. We visualize
how the proposed approach presents low correlation and high
local contrast, and how it improves the area covered by detected
features across the full image plane. A second quantitative ex-
periment has been performed for scene recognition. We show
how the same descriptor improves its performance when ap-
plied on the MTT coding, and we compare the results to current
state-of-art descriptors, which are overcome.

In the future, we plan to study the impact of MTT to detect
keypoints. Many descriptors use the Harris-Laplace detector to
select keypoints in the image where the descriptor is computed.
The increase in the image contrast in the MTT channels could
allow the Harris-Laplace operator to detect more points and this
fact could improve the results of the image descriptors computed
on those locations.
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NOTES
1Hue maps are defined as clusters of neurons that peak when a specific color

stimuli is presented. Although, a lot of research is left to be done in this area, some
interesting results have started to arise: there are more hue maps in higher levels
than the six opponent colors [18, 37], and the peaks of the cell responses are given
by particular hues [38–40].

2As defined in the C-SIFT descriptor [3].
3We use this measure instead of a global correlation average due to the different

number of channels in each color representation.
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