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Abstract—We propose a saliency model termed SIM (Saliency by Induction Mechanisms) which is based on a low-level spatio-
chromatic model that has successfully predicted chromatic induction phenomena. In so doing, we hypothesize that the low-level
neural mechanisms that enhance or suppress image detail are also responsible for making some image regions more salient.
Moreover, SIM adds geometrical grouplets to enhance complex low-level features such as corners, and suppress relatively
simpler features such as edges. Since our model has been fitted on psychophysical chromatic induction data, it is largely non-
parametric. SIM outperforms state-of-the-art methods in predicting eye-fixations on two datasets and using two metrics.
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1 INTRODUCTION

THE ability to predict the attentional gaze of ob-
servers viewing a scene has wide applications,

from object recognition and visual aesthetics to mar-
keting and user interface development. As a result,
a great deal of research effort has been devoted to
developing models of human visual attention. Visual
attention is thought to comprise bottom-up and top-
down components. This paper focuses on bottom-up
attention or saliency, which relates to cues such as
local contrast, color and motion.

There is a wide spectrum of methods for mod-
eling saliency [1], from biologically-inspired models
to learning-based approaches. Among the more bio-
inspired models, Itti et al.’s [2] is one of the most in-
fluential. It uses a neural network to output a saliency
map after training the network with center-surround
excitation responses of feature maps obtained after a
single layer of linear filters are applied to the input
image. Each feature map contains information from
one of three cues: orientation, color or scale. Gao et
al. [3] considered the saliency of a local region to
be quantified by the discriminatory power of a set
of features describing that region to distinguish the
region from its surrounding context. Bruce & Tsotsos
[4] approached local saliency as the self-information of
local patches with respect to its surrounding patches,
where the surround could be considered a localized
surround region or the remainder of the entire image.
In [4], an ICA basis set of filters was learnt from RGB
patches extracted from images and used to represent
the local patches. As was also found by Hou &
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Zhang [5] in a similar approach, the basis set consisted
mainly of oriented Gabor-like patches with opponent
color properties. Zhang et al. [6] also proposed a
method which uses self-information, but in this case
a spatial pyramid was used to produce local features
and a database of natural images, rather than a local
neighborhood of pixels or a single image, provided
contextual statistics. In addition, Zhang et al. extracted
features from a spatial pyramid of each of the three
opponent color channels. Seo & Milanfar [7] used
kernel regression-based self-resemblance to compute
saliency, and considered a region to be salient when
its curvature was different to that of its surround.

In these bio-inspired approaches, there remain sev-
eral major challenges, including:

• generating the optimal feature maps for estimat-
ing saliency [8];

• holistically combining saliency information from
these feature maps, which are extracted from
multiple scales, orientations and color channels
[9]; and

• selecting the many model parameters (such as
the number, type and orientation of filters, and
coefficients for non-linear normalisations and ac-
tivation functions) present in such models [10].

In this work, we propose a saliency model which
addresses the above issues by making two main con-
tributions:

• We adapt a low-level color induction model in
order to predict saliency. The resultant saliency
model inherits an extended Contrast Sensitivity
Function (termed the ECSF ), which provides a
biologically-inspired manner of integrating scale,
orientation and color. The ECSF has been fitted
to psychophysical data and as a result requires no
parameter tuning. As such, it may be considered
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as prior knowledge included in SIM.
• We use “geometrical grouplets” [11] to produce

a sparse and efficiently-computed image repre-
sentation that enhances features known to guide
attention and suppresses non-salient features.

The proposed model exceeds the performance of
state-of-the-art saliency estimation methods in pre-
dicting eye-fixations for two datasets and using two
metrics.

The remainder of this article is organized as follows:
in section 2 we describe the color induction principles
that underlie our saliency model. In section 3 we
describe our sparse image representation based on
geometrical grouplets. Our entire saliency estimation
framework is detailed in section 4. In section 5 we
discuss quantitive and qualitative experimental re-
sults and we draw several conclusions in section 6.
A preliminary version of this work appeared in [12].

2 MODELING LOW-LEVEL COLOR VI-
SION
Two decades ago, a modular paradigm arose in bio-
logical vision stating that color perception occurs in
the visual system in a specific cortical area, V4 [13].
This modular paradigm was adopted by Itti et al. for
saliency [2]. In the intervening years however, a large
body of evidence has emerged which supports the
view of a more interlinked processing of color and
form in the human visual cortex [14].

In this work we adapt a computational model
of color perception [15] to the problem of saliency
estimation. The model is based on a non-modular
approach to combining color, scale and orientation
and has been designed to predict well-known color
induction phenomena. Color induction refers to per-
ceived changes in the color appearance of a stimulus
due to surround influence, and may be demonstrated
using common visual illusions. Our adaptation of
the color perception model of [15] is motivated by
our hypothesis that factors related to color induction
phenomena also inform on local saliency.

The model of [15] captures the effect of three key
properties on the perceived color of stimuli. In the
following paragraphs we describe these effects and
how they have been incorporated into our saliency
model.

First, the perceived color of a stimulus is influenced
by the surround spatial frequency. Fig. 1(a) shows how
surround spatial frequency affects the perceived col-
ors of 4 identical stimuli. In a high-frequency back-
ground the color of the stimulus approaches that
of the surround (top left stimulus becomes more
greenish while the bottom left becomes yellowish).
In a low-frequency background the stimulus’s per-
ceived color moves away from the surround color
(top right stimulus becomes more yellowish when
surrounded by green; bottom right more greenish

(a) (b) (c)

Fig. 1. Perceived color of the stimulus depends on the (a) color and
frequency of the surround; (b) relative orientation of the stimuli to the
surround; (c) self-contrast of the surround.

when surrounded by yellow). These induction effects
are termed assimilation and contrast respectively.

Second, orientation also influences color appearance.
In Fig. 1(b) we can observe that the relative orientation
between the stimulus and the surround provokes a
perceptual change. While the top left and right stimuli
clearly undergo assimilation (a greenish perception
when surrounded by pink, and a bluish perception
when surrounded by blue), the stimuli at bottom
appear closer to their true cyan color. This is because
assimilation is greatest when the stimulus and back-
ground have the same orientation.

These two effects are incorporated into our saliency
model by representing images using a wavelet decom-
position, which jointly encodes the spatial frequency
and orientation of image stimuli. Given an image I ,
the wavelet decomposition of one of its channels Ic is

WT (Ic) = {ws,o}1≤s≤S,o={h,v,d} (1)

where ws,o is the wavelet plane at spatial scale s and
orientation o. For an image whose largest dimension is
size D, the decomposition produces S = log2D scales.
The wavelet transform WT uses Gabor-like basis func-
tions, as Gabor functions resemble the receptive fields
of neurons in the cortex. Note that we cannot use an
exact Gabor transform as it does not have a complete
inverse transform, a property which will be required
in a latter stage of our method.

Third, surround contrast also plays a crucial role in
how color is perceived. As shown in Fig. 1(c), chro-
matic assimilation is reduced and chromatic contrast
is increased when the surround contrast decreases.
Therefore the amount of induction at an image lo-
cation is modulated by the surround contrast at that
location. The surround contrast of a stimulus at posi-
tion x, y can be modeled as a divisive normalization,
which we term the normalized center contrast, zx,y ,
around a wavelet coefficient wx,y . It is estimated as a
normalization of the variance of the coefficients of the
central region acen

x,y normalized by the variance of the
coefficients of the surround region asur

x,y :

zx,y =
(acen

x,y )2

(acen
x,y )2 + (asur

x,y )2
. (2)

Divisive normalization has been shown by Simoncelli
and Schwartz [16] to remove statistical dependencies
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present in wavelet decompositions of natural scenes
and, in this instance, may be viewed as a center-
surround contrast mechanism.

The three effects mentioned above are integrated
using an extended Contrast Sensitvity Function
(ECSF ). The ECSF determines the type of induction
depending on the orientation at a specific spatial
frequency, and the amount of induction depending
on the surround contrast. This function is inspired by
the well-known CSF that was measured in [17] for
luminance and colour contrast.

The ECSF we use is a function of spatial scale
s and normalized center contrast z. Spatial scale is
inversely proportional to spatial frequency ν such that
s = log2(1/ν) = log2(T ), where T is the period and
thus denotes one frequency cycle measured in pixels.
The ECSF function is defined as ECSF (z, s) =
z · g(s) + k(s). Here z is modulating the function
g(s), which is an approximation to the psychophysical
CSF and is itself introducing assimilation or contrast
depending on the spatial frequency s. Function g(s)
is defined as

g(s) =

 βe
− (s−sg0)2

2σ2
1 s ≤ sg

0

βe
− (s−sg0)2

2σ2
2 otherwise

(3)

Here β is a scaling constant, and σ1 and σ2 define
the spread of the spatial sensitivity of g(s). The sg

0

parameter defines the peak scale sensitivity of g(s).
An additional function, k(s), was introduced to ensure
a non-zero lower bound on ECSF (z, s):

k(s) =

{
e
− (s−sk0 )2

2σ2
3 s ≤ sk

0

1 otherwise
(4)

Here, σ3 defines the spread of the spatial sensitivity of
k(s) and sk

0 defines the peak scale sensitivity of k(s).
In the induction model of [15], the output of the

ECSF was used to weight wavelet coefficients, after
which an inverse wavelet transform was performed,
producing a new “perceived” image. This recon-
structed image replicates color induction phenom-
ena perceived by human observers. For our saliency
model, we use these induction weights output by the
ECSF as a measure of the saliency of a feature given
its orientation, spatial frequency and center-surround
contrast properties.

We have fitted all the parameters of the ECSF
in order to predict psychophysical data from two
experiments, one involving brightness and the other
involving color induction. In the first experiment, by
Blakeslee et al. [18], observers viewed two stimuli with
the same luminance but different perceived bright-
ness. They were then asked to modify the brightness
of one of the stimuli to match the perceived brightness
of the other stimulus. The second experiment was
conducted by Otazu et al. [15] in an analogous fashion,
but with observers performing asymmetric color and

Fig. 2. (a) Examples of experimental stimuli. (b) Correlation between
model prediction and psychophysical data. The solid line represents
the model linear regression fit and the dashed line is the ideal fit,
i.e. perfect correlation. Since measurements involve dimensionless
measures and physical units, they were arbitrarily normalized to
show the correlation.

TABLE 1
Fitted Parameters for ECSF (z, s) functions.

Param. σ1 σ2 σ3 β sg
0 sk

0

Intensity 1.021 1.048 0.212 4.982 4.000 4.531
Color 1.361 0.796 0.349 3.612 4.724 5.059

brightness matching tasks rather than tasks involving
only brightness. In these matching experiments, the
difference between the original physical (color or
brightness) values of the stimulus and the modified
physical values was recorded as a measure of induc-
tion. Least squares regression was used to select the
parameters of the functions that best reproduce this
data (given in Table 1) in the perceived image output
by the induction model. Examples of stimuli used in
these experiments are shown in Figure 2.

As the human visual system has different contrast
sensitivities for color and luminance, two different
ECSF functions were fitted using these data, one for
intensity channels (ECSFI ) and another for chromatic
channels (ECSFC). Both fitted ECSF (z, s) functions
maintained a high correlation rate (r = 0.9) with
the color and brightness psychophysical data (see
Figure 2). Their profiles are shown in Fig. 3. The func-
tions enhance normalized center contrast in a narrow
passband and suppress this contrast for low spatial
scales. The magnitude of the enhancement increases
with the magnitude of the normalized center contrast,
z, as observed in Figs. 3(a) and 3(b). These ECSF s
have peak spatial scales in the wavelet decomposition
that correspond to peak spatial frequencies between
2-5 cpd, which agree with previous psychophysical
estimations [17].

As stated above, we use a wavelet transform with
Gabor-like basis functions as an image representation.
This representation agrees with a long-standing view
of the early human sensory system as an efficient
information processing system [19], [20]. In this view,
an objective of early sensory coding is to transform
the visual signal into a sparse, statistically indepen-
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Fig. 3. Weighting functions for (a) intensity and (b) chromaticity
channels: Bluer colors represent lower ECSF values while red-
der colors indicate higher ECSF values. (c) shows slices of both
ECSF (z, s) functions for z = 0.9. For a wavelet coefficient corre-
sponding to a scale between approximately 3 and 6, z is boosted.
Coefficients outside this passband are either suppressed (for low
spatial scales) or remain unchanged (for high spatial scales).

dent representation where redundancy has been re-
moved. Wavelet decompositions are highly sensitive to
edges, in addition to more complex features resulting
from super-imposed orientations, such as corners and
terminations. However, in comparision with edges,
complex features are preferentially fixated on when
humans free-view natural images, [21], [22]. There-
fore, to estimate saliency, an image representation
with higher responses for complex features, relative
to the responses for simple features, is desirable. To
construct such an improved image representation we
will employ the Grouplet Transform (GT).

3 GROUPLET TRANSFORM FOR IM-
AGE REPRESENTATION
The GT [11] is an additional stage of the image repre-
sentation that renders it more responsive to complex
features. The GT is applied to each wavelet plane ws,o

using a modified Haar transform, computed using a
lifting scheme.

The GT as a modified Haar Transform
The Haar transform (HT) decomposes a signal into
a residual (lower-frequency) component and a detail
(higher-frequency) component. When the signal is a
wavelet plane ws,o, its residual data rs,j,o is initialized
as rs,1,o = ws,o. The grouplet scale j increases from 1
to J , where J is the number of scales. For a horizontal
wavelet support, the HT groups consecutive residual
coefficients rs,j,o(2x − 1, y) and rs,j,o(2x, y) at scale j
to compute the residual at the subsequent scale j+ 1:

rs,j+1,o(x, y) =
rs,j,o(2x− 1, y) + rs,j,o(2x, y)

2
. (5)

The detail data is computed as a normalized differ-
ence of the consecutive residual coefficients:

ds,j+1,o(x, y) =
rs,j,o(2x, y)− rs,j,o(2x− 1, y)

2j
. (6)

A GT is a Haar transform in which the residual and
detail coefficients are computed between pairs of ele-
ments which are not necessarily consecutive, but are

(a) (b) (c) (d)

Fig. 4. Grouping associated wavelet coefficients: (a) shows the
input image; (b) shows the association field at j = 1 over a vertically
orientated wavelet plane (dark coefficients in the wavelet plane are
negative, bright coefficients are positive and gray coefficients are
close to zero). The association field (arrows) groups coefficients. The
resultant grouplet detail plane in (c) is more sparse than the wavelet
plane, preserving only the variations occurring at the corners and
terminations; (d) shows the final saliency map (see section 4).

paired along the contour to which they both belong. To as-
certain the contour along which coefficients should be
paired, an “association field” is defined using a block
matching algorithm. In this field, associations occur
between points and their neighbors in the direction
of maximum regularity. In this way, the association
field encodes the anisotropic regularities present in
the image. The regularities in rs,j,o are suppressed
in ds,j+1,o by equation 6. Therefore, the GT is in
essence a differencing operator applied to neighboring
wavelet responses along a contour. Neighbors with
similar values produce low responses in ds,j+1,o while
those with differing values or singularities produce
high responses, as illustrated in Fig. 4. By computing
ds,j,o∀j = 1, ..., J , points are grouped across increas-
ingly long distances. Each resultant grouplet plane is
a sparser representation that contains comparatively
higher coefficients for complex geometrical features,
whilst simple features are suppressed.

In our saliency model, we apply the GT to wavelet
coefficients in order to obtain this improved represen-
tation in which salient features are more prominent. It
has been suggested that the hierarchical application of
the GT to wavelet coefficients may mimic long-range
horizontal connections between simple cells in area
V1 [11].

4 SALIENCY ESTIMATION
In previous sections we made two hypotheses on
what constitutes a salient visual stimulus. First, we
claimed that a region is salient if its color is enhanced
by the surround. We have shown that enhancement
can depend on frequency, orientation and contrast
of the surround. We proposed adapting a color in-
duction model based on wavelets to indicate color
contrasted regions. Second, we claimed that complex
image features such as corners, terminations or cross-
ings emerging from contours are salient. We proposed
that a grouplet transform be used to enhance these
complex features in the image representation.

Considering both hypotheses, here we propose a
6-stage model that estimates saliency by enhancing
image locations with certain local spatio-chromatic
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properties and/or contour singularities. Our model
contains the main stages of a color induction model
[15], which uses a wavelet decomposition and a func-
tion that modulates wavelet coefficients according to
their local properties. We introduce a grouplet trans-
form that enables the grouping of simple features
whilst maintaining singularities. Below, we describe
the stages of our saliency model.

Stage (I): Color representation Three opponent color
channels are obtained from image I by converting
each (RGB) value, after γ correction, to the opponent
space so that O1 = R−G

R+G+B , O2 = R+G−2B
R+G+B and

O3 = R+G+B.

Stage (II): Spatial decomposition Each channel is decom-
posed in two successive steps. The first one uses the
wavelet transform in equation 1, obtaining {ws,o}.
Subsequently, on each wavelet plane the grouplet
transform in equation 6 is applied:

Ic
WT−→ {ωs,o}

GT−→ {ds,j,o} (7)

where ds,j,o denotes the detail plane at scale j. For
a wavelet plane whose largest dimension is size D,
J = log2D. To group features, the association field
for a wavelet plane is initialized perpendicularly to
its orientation o. Thus for a horizontal wavelet plane,
the Haar differencing in equation 6 is conducted
column-wise. A diagonal wavelet plane captures high
frequency information in both horizontal and vertical
orientations. Therefore the grouplet transform is ap-
plied to such planes in both horizontal and vertical
orientations separately, leading to two sets of grouplet
planes for each diagonal wavelet plane.

Stage (III): Normalized Center Contrast (NCC) We com-
pute the NCC, zs,j,o(x, y), for every grouplet coeffi-
cient ds,j,o(x, y) using equation 2.

Stage (IV): Induction weights (ECSF ) The ECSF func-
tion is used to compute induction weights αs,j,o(x, y)
for every grouplet coefficient ds,j,o(x, y):

αs,j,o(x, y) = ECSF (zs,j,o(x, y), s). (8)

The ECSFC function is used for channels O1 and O2,
while ECSFI is used for channel O3. The αs,j,o(x, y)
weight gives a measure of saliency for location (x, y)
in ds,j,o. The ECSF acts so that zs,j,o values with
scales s in the passband of the ECSF are enhanced,
while those with scales outside of this passband are
suppressed.

Each αs,j,o plane is resized to the size of its cor-
responding wavelet plane ws,o using bicubic inter-
polation, and then summed to produce αs,o for that
wavelet plane:

αs,o(x, y) =
∑

j

ϕ(αs,j,o(x, y)) (9)

where ϕ(·) denotes bicubic interpolation.

Stages (V)-(VI): Saliency Map Recovery Finally, an
inverse wavelet transform is performed on the spatial
pyramid of αs,o planes to produce the final saliency
map Sc for an image channel. At this point the
pipeline of the model may be summarized as

Ic
WT−→ {ωs,o}

GT−→ {ds,j,o}
NCC−→ {zs,j,o}

ECSF−→ {αs,j,o}
ϕ−→

{αs,o}
WT−1

−→ Sc

The saliency maps for all three image channels are
combined to form the final saliency map S using the
Euclidean norm S =

√
S2

O1 + S2
O2 + S2

O3. The method,
termed SIM for Saliency by Induction Mechanisms, is
summarized schematically in Fig. 5.

Designing the center and surround regions

In stage III of the method, normalized center contrast
is measured. The number of pixels spanning the cen-
ter region and the extended region, comprising both
the center and surround regions, were chosen so as to
resemble the receptive and extra-receptive fields of V1
cortical cells respectively, in a similar fashion to Gao
et al. [3]. Various studies [23], [24] estimate the central
region of the receptive field in V1 cells to correspond
on average to a visual angle, β, of approximately 1◦.
The size of a feature, l, that subtends this visual angle
when shown on a screen is computed as l = d · tanβ,
where d is the distance from the observer to the screen.
Therefore, the number of pixels Pc that correspond to
feature l is Pc = (d·tanβ)/(mon

res ), where mon is the size
of the monitor and res is the average of the horizontal
and vertical resolution of the displayed image. We
used this Pc value as the diameter of the central
region. The diameter of the extra-receptive field, Pe−r,
has been estimated to be at least 2 to 5 times that of
the receptive field [25], [26]. We experimented with
diameters in this range and found a size of 5.5 times
that of the central region to perform well. These
diameters were held constant throughout the image
decomposition so that the effective sizes increase with
spatial scale.

5 EXPERIMENTS

To evaluate SIM, we applied it to the problem of
predicting eye-fixations in two image datasets. The ac-
curacy of the predictions were quantitatively assessed
using both the Kullback-Leibler (KL) divergence and
the receiver operating characteristic (ROC) metrics.
The KL divergence measures how well the method
distinguishes between the histograms of saliency val-
ues at fixated and non-fixated locations in the image.
The ROC curve measures how well the saliency map
discriminates between fixated and non-fixated loca-
tions for different binary saliency thresholds. For both
metrics, a higher value indicates better performance.
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Fig. 5. Schematic of SIM: (I) The image is converted to the opponent space. (II) Each channel is decomposed into wavelet planes, and
each wavelet plane is decomposed into grouplet planes (demarcated with black lines). (III) Contrast responses from grouplet planes are
calculated and combined to produce contrast response planes. (IV) The ECSF produces induction weights planes αs,o. (V) The αs,o

planes are combined by an inverse wavelet transform to produce the final channel map. (VI) The 3 channels maps are then combined.

As noted by Zhang et al., image border effects in
several saliency methods result in artificial improve-
ments in the ROC measure [6]. Therefore we adopt
the evaluation framework described in [6] in order to
avoid this issue and ensure a fair comparison of meth-
ods. This evaluation framework comprises modified
metrics for the area under the ROC curve (AROC) and
KL divergence metrics. For each image in the dataset,
fixations for that image are denoted true positives,
while the fixations for a randomly chosen different
image in the dataset are denoted false positives for
that image. With this formulation, any center bias of
the true positive fixations with respect to the false
positive fixations is avoided. The random selection of
false positive fixations means that a new calculation
of the metrics is likely to produce a different value.
Therefore, in order to compute the standard error
(SE), both metrics were computed 100 times, each time
using a different random permutation of the fixation
points as false positives. The KL-divergence between
the histograms of saliency values at true-positive
fixation points and false-positive fixation points was
computed.

The first eye-fixation dataset used [4] is a pop-
ular benchmark dataset for comparing eye-fixation
predictions between saliency models. It contains 120
color images, with 511x681 resolution, of indoor and
outdoor scenes, along with the recorded eye-fixations
of 20 subjects, to whom the images were presented
for 4 seconds. The evaluation was performed on 7
state-of-the-art methods as well as SIM. The results
are reported in Table 2. We see that, with or without
the GT, SIM exceeds the state-of-the-art performance
as measured by both metrics. Further, the addition of
the GT improves upon SIM’s performance.

The second eye-fixation dataset used was provided
by Judd et al. in [29]. This dataset contains 1,003
color images of varying dimensions, along with the
recorded eye-fixations of 15 subjects, to whom the im-
ages were presented for 3 seconds. Because fixations

TABLE 2
Performance on Bruce & Tsotsos dataset.

Model KL (SE) AROC (SE)

Itti [2] 0.1913 (0.0019) 0.6214 (0.0007)
AIM [4] 0.3228 (0.0023) 0.6711 (0.0006)
SUN [6] 0.2118 (0.0019) 0.6377 (0.0007)
GBVS [27] 0.1909 (0.0015) 0.6324 (0.0006)
Seo [7] 0.3558 (0.0027) 0.6783 (0.0007)
DVA [5] 0.3227 (0.0024) 0.6795 (0.0007)
SIGS [28] 0.3679 (0.0025) 0.6868 (0.0007)
SIM 0.4925 (0.0034) 0.7136 (0.0007)

SIM w/o GT 0.4456 (0.0031) 0.7077 (0.0007)
SIM w/o ECSF 0.3786 (0.0029) 0.6877 (0.0008)
SIM with tuned Pc, Pe−r 0.4920 (0.0034) 0.7138 (0.0007)

must be compared across images, only those images
whose dimensions were 768x1024 pixels were used,
reducing the number of images examined to 463. The
images in this dataset contain a greater number of
semantic objects which are not modeled by bottom-
up saliency, such as people, faces and text, and as
such is more challenging than the first. Therefore, the
AROC and KL divergence metrics are lower for all
the saliency models, as one would expect. The results,
shown in Table 3 indicate that once again SIM exceeds
state-of-the-art performance.

TABLE 3
Performance on Judd et al. dataset.

Model KL (SE) AROC (SE)

Itti [2] 0.2073 (0.0014) 0.6285 (0.0005)
AIM [4] 0.2647 (0.0016) 0.6506 (0.0004)
SUN [6] 0.1832 (0.0012) 0.6244 (0.0004)
GBVS [27] 0.1207 (0.0008) 0.5880 (0.0003)
Seo [7] 0.2749 (0.0015) 0.6479 (0.0004)
DVA [5] 0.2924 (0.0016) 0.6565 (0.0005)
SIGS [28] 0.2953 (0.0014) 0.6555 (0.0004)
SIM 0.3678 (0.0020) 0.6788 (0.0005)

SIM w/o GT 0.3021 (0.0017) 0.6695 (0.0005)
SIM w/o ECSF 0.2885 (0.0016) 0.6618 (0.0005)
SIM with tuned Pc, Pe−r 0.3663 (0.0020) 0.6774 (0.0005)
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Implementation Details
The Bruce & Tsotsos dataset was collected on a 21
inch monitor with d = 29.5 inches. For images with
511x681 resolution, the diameter of the central region,
Pc, = 18 pixels. The Judd et al. dataset was collected on
a 19 inch monitor with d = 24 inches. For images with
768x1024 resolution, Pc = 24 pixels. For a MATLAB
implementation running on an Intel Core 2 Duo CPU
at 3.00 GHz with 2GB RAM, typical run times for color
images of sizes 128x128, 256x256 and 512x512 pixels
are 0.6, 1.2 and 3.2 seconds respectively.

5.1 Discussion
Qualitative comparisons between two state-of-the-art
methods [4], [7] and SIM are displayed in Figs. 6 and
9. One can see that for the proposed method (column
(d)), the most salient regions correspond better to eye-
fixations and highly salient features are located at a
variety of spatial frequencies.

(a) (b) (c) (d)

Fig. 6. Qualitative results for Bruce & Tsotsos dataset: Column
(a) contains the original image. Columns (b), (c), and (d) contain
saliency maps obtained from [4], [7] and SIM respectively. Yellow
markers indicate eye fixations. Our method is seen to more clearly
distinguish salient regions from background regions and to better
estimate the extent of salient regions.

In addition, the model is less sensitive to low-
frequency edges such as skylines and road curbs
while avoiding excessive sensitivity to high-frequency
textured regions. The weighting function ECSF (z, s)
is critical to these effects as it is more sensitive to mid-
range frequencies, as Fig. 3 shows. As a result, it acts
as a bandpass filter in the image’s spatial frequency
domain, and provides a biologically-inspired mecha-
nism for combining spatial information at different
scales. The importance of this combination is evi-
denced by the fact that SIM’s performance decreases
significantly (though it is still state-of-the-art) when
the ECSF is removed (see Tables 2 and 3). The GT
further lowers sensitivity to low-frequency edges.

Scale selection and combination are required
for all saliency estimation methods and have

proven challenging. Most state-of-the-art methods
(e.g. [7],[5],[28]) perform scale selection by simply
choosing an image resolution that gives best per-
formance as measured on eye-fixation data test-sets.
However, even when using data from the test do-
main, the performances of these methods are lower
than SIM’s, which uses a scale combination method
fitted using experimental data from a different prob-
lem domain, namely color perception prediction. In
addition, Seo et al. reported no improvement when
combining saliency maps computed at different scales
[7]. Therefore the inclusion of an effective scale com-
bination mechanism is one important way in which
our method differs from previous ones.

One can also see in the figures that regions of high
saliency are more clearly distinguished from back-
ground regions. Other methods may provide good
localization for salient regions at few spatial scales [7]
or may detect poorly localized regions at many spatial
scales [4]. Our method strikes a good balance between
localization of salient regions and detection of salient
regions at different spatial scales. This is reflected in
the large improvements in KL divergence achieved for
both datasets. The increased discriminative power is
due to the fact that the background features present
in the wavelet planes are attenuated by the grouplet
transform, as illustrated in Fig. 7. These background
features tend to be small, isolated features which,
while present in wavelet planes, do not persist beyond
the first few grouplet planes.

(a) Input image
fll fl
(b) Result without GT

fl fl
(c) Result with GT

Fig. 7. The GT attenuates spatially isolated features.

The grouplet transform itself may be considered a
center-surround mechanism, as it measures the dif-
ference in amplitude between a coefficient and its
neighbor. Consequently, regions of the wavelet plane
with similar amplitudes, and therefore low contrast,
are attenuated in their grouplet planes, while regions
of the wavelet plane with large differentials between
their amplitudes are enhanced. Therefore the grou-
plet transform acts to further distill the information
present in the wavelet transform, preserving only
features which are spatially extensive and strongly
contrasting with their surroundings.

Our model required parameters to be set for the
ECSF and the center-surround regions. The ECSF
parameters were set using psychophysical data and
are dataset-independent. Therefore our only free pa-
rameters are the center-surround region sizes. As
mentioned in section 4, the center region’s size was set
to correspond to 1◦ of visual angle, and the surround
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size was set to be 5.5 times the size of the center
region. However, when the viewing conditions of the
images are unknown, Pc and Pe−r cannot be deter-
mined in this manner. In such a case, these values may
be fitted as hyper-parameters of the model. We found
that for Pc = 17 and Pe−r = 91, SIM maintains its
performance for both metrics and both datasets (see
Tables 2 and 3, SIM with tuned Pc, Pe−r). Moreover,
the performance is quite stable for a wide range of
values of Pc and Pe−r (please see the supplemental
material for related experimental results). As such, our
model is robust to uncertainty in the choice of free
parameters.

We also investigated the effect of varying the spatial
scale for which the ECSF (z, s) gives the highest
response, denoted by s0. We varied s0 for the ECSF
of the intensity channel, the channel containing the
majority of the saliency information. Fig. 8 shows that
SIM performs best when mid-range frequencies are
enhanced and low or high frequencies are inhibited.
Furthermore, the best scale range for these metrics, be-
tween 4 and 6, is consistent with the value determined
using psychophysical data, s0 = 4.2 (see Fig. 3(a)).

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

m
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ri
c
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0

 

 

AROC
KL

Fig. 8. Change in AROC and KL metrics with change in s0 for
intensity ECSF (z, s), for the Bruce & Tsotsos dataset, using SIM
with GT. The best s0 for both these metrics are in line with the value
determined using psychophysical experiments.

(a) (b) (c) (d)

Fig. 9. Qualitative results for Judd et al. dataset: Column (a) contains
the original image. Columns (b), (c), and (d) contain saliency maps
obtained from [4], [7] and SIM respectively. Yellow markers indicate
eye fixations.

6 CONCLUSIONS
We proposed a saliency model, SIM, based on a
biologically-inspired low-level spatio-chromatic rep-
resentation. SIM measures saliency using the result
of the perceptual integration of color, orientation,
local spatial frequency and surround contrast. The
parameters of our integration mechanisms have been
fitted to psychophysical data. In addition, we have
shown that saliency estimation is improved if we
insert a grouping stage that suppresses simple edges,
thereby avoiding strong saliency responses for such
features. We demonstrate that SIM exceeds state-of-
the-art performance in predicting eye-fixations on two
datasets and using two metrics. Its success raises
an intriguing question for further research, namely,
whether the model designed to predict color percep-
tion and adapted to saliency estimation can be used
to model other low-level visual tasks.
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