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When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the
incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear
relations. Recently, Philipona and O’Regan (2006) showed that when this relation is singular in a mathematical sense, then the
surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as
corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O’Regan’s
approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by
transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by
simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space,
Philipona and O’Regan’s linear relation is captured by a simple Land-type color designator defined by dividing reflected light by
incident light. This link between Philipona and O’Regan’s theory and Land’s notion of color designator gives the model
biological plausibility. We then show that Philipona and O’Regan’s singular surfaces are surfaces which are very close to
activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to
zero is quantified in a new simplified measure of singularity which is also shown to relate to .the chromaticness of colors. As in
Philipona and O’Regan’s original work, our new theory accounts for a large variety of psychophysical color data.
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Introduction

The human brain treats colors asymmetrically: as
regards colored lights, certain hues of red, green, yellow,
and blue, the so-called ‘‘unique hues’’ (Valberg, 2001),
are perceived as being more ‘‘pure’’ than other hues; as
regards colored surfaces, the well-known ‘‘World Color
Survey’’ (WCS) shows that certain colors are considered
more basic or prototypical or ‘‘focal’’ across different
cultures (red, yellow, green, and blue being the four most
frequent) (Berlin & Kay, 1969; Kay, 2005).

Explanations for these facts cannot lie in the physical
light spectra or reflectance properties, because these are

continuous functions with no intrinsic asymmetries.
Equally, appealing to the fact that there are three cone
types does not in any obvious way by itself predict the
experimentally observed asymmetries. Thus, explana-
tions must be sought in neural (Parraga, Troscianko, &
Tolhurst, 2002), environmental (Yendrikhovskij, 2001),
cultural, or linguistic mechanisms (Kay & Regier,
2003).

It seems at first sight that a plausible candidate for a
neural mechanism might lie in the opponent color
processing carried out by the early visual system
(Hering, 1891; Wyszecki & Stiles, 1982). However, the
extremes of the red/green and blue/yellow axes
proposed in the opponent theory unfortunately do

Journal of Vision (2012) 12(6):7, 1–14 1http://www.journalofvision.org/content/12/6/7

doi: 10 .1167 /12 .6 .7 ISSN 1534-7362 � 2012 ARVOReceived February 12, 2012; published June 4, 2012

mailto:javier.vazquez@cvc.uab.cat
mailto:javier.vazquez@cvc.uab.cat
mailto:jkevin.oregan@gmail.com
mailto:jkevin.oregan@gmail.com
mailto:maria.vanrell@cvc.uab.cat
mailto:maria.vanrell@cvc.uab.cat
mailto:G.Finlayson@uea.ac.uk
mailto:G.Finlayson@uea.ac.uk
http://www.journalofvision.org/content/12/6/7
http://www.journalofvision.org/content/12/6/7


not correspond to the four unique hues. In particular,
the theory would predict that to appear as unique
green, a light should only activate the red/green
channel, and not the blue/yellow channel. Yet it is
found that to appear uniquely green a light must
contain some yellow. Likewise it is found that to
appear uniquely yellow, some red must be mixed in; to
appear uniquely blue, some green must be mixed in
(Burns, Elsner, Pokorny, & Smith, 1984; Cicerone,
Krantz, & Larimer, 1975; Kuehni, 2004; Mollon &
Jordan, 1997; Valberg, 2001; Webster, Miyahara,
Malkoc, & Raker, 2000; Wuerger, Atkinson, &
Cropper, 2005).

Perceptual saliency of colors is another mechanism
that has been invoked, this time to explain the
intercultural data of the World Color Survey concern-
ing the naming of surface colors. The idea is that
speakers distribute color names over perceptual color
space in a way to maximize the perceptual similarity
between colors having the same names, and to
minimize the similarity between colors having different
names (Kay & Regier, 2003). Whereas this model does
a reasonable job of explaining the boundaries between
different color names, it provides no explanation for
the exact hues which are considered to be ‘‘focal.’’

Recently, Philipona and O’Regan (2006) defined a
new approach for explaining the unique hues and
intercultural World Color Survey naming data. Phi-
lipona and O’Regan follow a very simple idea already
implicit in the color literature: color should be
considered to be the biological analogue of what
physicists call surface reflectance. Philipona and
O’Regan take the physicist’s notion of reflectance,
and create a biological reflectance function which can
be used by the brain with its three broad-band sensors.
They calculate this biological reflectance function for a
wide variety of surfaces and discover that certain
surfaces have the mathematical property of being
‘‘singular.’’ What this means is that these surfaces take
incoming light, which usually can vary in a 3-
dimensional space defined by L, M, and S cone
activations, and transform it into light which varies
only in either a 2- or in a 1-dimensional subspace of the
LMS activation space. Because singular surfaces reduce
variability from three dimensions to two or one
dimension, they can be said to display a simpler
behavior concerning how they affect incoming light
than the majority of surfaces. What is now extremely
striking is that these singular surfaces turn out to be
almost exactly the red, yellow, green, and blue surfaces
most frequently observed to be focal. Furthermore, if
these surfaces are illuminated by a canonical source of
natural illumination (Illuminant D65), the hues of the
resulting reflected light correspond accurately to the
monochromatic lights widely considered to be
‘‘unique’’ in psychophysical experiments.

A strength of the Philipona and O’Regan approach
is that it provides these explanations for both naming
data and unique hues without any parameter adjust-
ments. Well-known results on hue cancellation and hue
equilibrium (Chichilnisky & Wandell, 1999; Jameson &
Hurvich, 1955) also fall out very exactly from the
predicted unique hue data.

A weakness of the Philipona and O’Regan approach
up until now has been the fact that no clear link has
been made with classical approaches in color psycho-
physics, physiology, or artificial vision. In the present
paper we remedy this by showing that the Philipona
and O’Regan approach is closely related to the notion
of spectral sharpening used in computational vision to
obtain improved color constancy. The idea is that to
characterize surface reflectivity in a way that is
independent of illuminant, it is advantageous to use,
not the normal three cone sensors of the human eye,
but ‘‘sharpened’’ sensors which are linear combinations
of the cone mechanisms. The sharp sensors allow us to
define surface color ‘‘designators’’ similar to those
suggested by Land in his retinex theory (1964). (Color
designators are the color response for a surface divided
by the color response to white.) The sharp designators
defined by our approach have the property that they
are much more independent of illumination than those
defined in Land’s approach. Furthermore, our sharp
color designators turn out to be essentially the same as
the biological reflectances defined by Philipona and
O’Regan. Importantly, to compute the sharp designa-
tors we do not need to know what reflectance we are
looking at: we simply divide the sharpened sensor
responses of the (unknown) surface by the sharpened
sensor responses of white. This is in contradistinction
to the original Philipona and O’Regan theory in which
biological reflectances can only be calculated once the
transformation to virtual sensors particular to a given
surface has been found. Removing the requirement that
‘‘we know what we are looking at’’ is a significant
contribution of this paper.

An additional contribution of our paper is to
improve the measure of singularity used by Philipona
and O’Regan. Our new measure provides an appealing,
perceptually reasonable link to the notion of chroma-
ticness, that is, the degree to which a light deviates from
grey. We show that using our new measure of
singularity, predictions of color naming and unique
hues can be obtained that are at least as and possibly
more precise than those obtained by Philipona and
O’Regan.

The paper is organized as follows. In section 2 we
explain the biological model of Philipona and O’Regan.
After this, in section 3 we define our model based on a
set of sharp sensors and a new compact singularity
index. This is followed by section 4 where we
summarize the different results obtained.
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Philipona and O’Regan’s
biological model

Philipona and O’Regan’s (2006) biological model is
built on the assumption that the human vision system
must attempt to extract the reflection properties of
surfaces in the world independently of ambient lighting
conditions. In other words, it must try to deliver a
canonical, biological representation of reflectance.

Physicists achieve this task by defining the notion of
‘‘reflectance function’’ linking incident light energy at a
particular wavelength to reflected light energy at that
wavelength. Because the majority of surfaces only
absorb or reflect light energy at a given wavelength, and
do not redistribute energy in other wavelengths,
physicists can define reflectance at a given wavelength
k as a scalar s(k) attenuation between 0 and 1, and write
a simple linear relation linking incident light energy e(k)
at wavelength k to reflected light energy p(k) at that
wavelength:

pðkÞ ¼ sðkÞeðkÞ; giving sðkÞ ¼ pðkÞ=eðkÞ ð1Þ
so that the physical reflectance of a surface is simply the
ratio of reflected to incident light at each wavelength.

Unlike physicists, who can measure energy at each
monochromatic wavelength using a spectroradiometer,
information accessible to the brain is blurred over the
breadth of wavelengths that the human L, M, and S
cone types are sensitive to. It is now no longer true that
the effect of the surface on incident light can be
expressed simply as an attenuation of energy within
each of these broad bands. However, Philipona and
O’Regan show that it is still possible to define a
‘‘biological’’ reflectance measure that links the infor-
mation accessible to the brain about the incident light,
to the information accessible to the brain about the
reflected light in a way analogous to physicists’
Equation 1.

The information accessible to the brain about an
illuminant e(k) is the vector corresponding to the
responses of the three cone types to that illuminant:

we ¼ ðwe
1;w

e
2;w

e
3Þ

t

where we
i ¼

Z
w
QiðkÞeðkÞdk; i ¼ 1; 2; 3

ð2Þ

here t denotes the transpose of the vector, Qi(k) for i¼
1,2,3 define the absorption of the three human cone
types at each wavelength k, and we integrate over the
visible spectrum w.

The information accessible to the brain about the
reflected light is the vector corresponding to the
responses of the three cone types to the reflected light
from the surface:

ps;e ¼ ðps;e1 ; p
s;e
2 ; p

s;e
3 Þ

t

where ps;ei ¼
Z

w
QiðkÞeðkÞSðkÞdk; i ¼ 1; 2; 3

ð3Þ

where S(k) is the physicist’s reflectance function for the
surface s.

Philipona and O’Regan now show the at first sight
surprising result that for any surface s(k) there exists a
3·3 matrix As which is independent of the illuminant e
and very accurately describes the way the surface
transforms the accessible information about any
incident light into the accessible information about
reflected light:

�ðeÞ ; ps;e ’ As we ð4Þ

As is the 3·3 matrix best taking ps,e (for any
illuminant e) to we in a least-squares sense. Philipona
and O’Regan studied the validity of such an equation
for a very large number of natural and artificial
illuminants, and for a very large number of colored
surfaces. In fact, the result is analytically true if
incoming illumination is of dimensionality 3, that is,
if it can be described as a weighted sum of three basis
functions (Philipona & O’Regan, 2006). Since this is
known to be true to a good approximation for
daylights (Judd et al., 1964), the equation is very
accurate.

Equation 4 is the biological analogue of the
physicist’s relation (1), but because it is written in
terms of vectors and matrices instead of scalars,
Philipona and O’Regan could not immediately invert
it by dividing the vector ps,e by the vector we to obtain
the biological equivalent of the physicist’s reflectance in
Equation 1. Philipona and O’Regan were able to do
something similar however by first diagonalizing the
matrix As, that is, writing it as the product (Ts)�1 Ds Ts,
where Ds is a diagonal matrix, and Ts is a transforma-
tion matrix. In that case Equation 4 becomes

ps;e ’ ðTsÞ�1DsTs we ð5Þ

so that

Tsps;e ’ DsTs we ð6Þ

Matrix Ts operating on ps,e and we maps these
vectors into a basis where the accessible information
matrix is diagonal. Because of the linearity of the
integrals, the same effect can be achieved if instead of
using the usual L, M, and S cones, we used a set of
‘‘virtual’’ sensors obtained precisely by taking this
linear combination Ts of the cone responses:

qs;e ¼ Tsps;e xs;e ¼ Tswe ð7Þ

(Note we are using Greek letters to denote virtual
sensors.) Then we can write, in terms of the virtual
responses qs,e and xs,e:

Journal of Vision (2012) 12(6):7, 1–14 Vazquez-Corral, O’Regan, Vanrell, & Finlayson 3



qs;e ’ Dsxs;e ð8Þ

Let us denote the ith component of the diagonal matrix
Ds as ri

s

qs;e
i ¼ rsix

s;e
i ð9Þ

giving

rsi ¼
qs;e
i

xs;e
i

ð10Þ

Thus, by considering the virtual, recomposed sensors
instead of the eye’s actual LMS responses, Equation 10
defines a biological reflectance notion analogous to the
physicist’s reflectance defined in Equation 1 for each
wavelength. For any surface, instead of having a
reflectance function defined at every wavelength, we
have a biological reflectance defined by three reflec-
tance coefficients ri

s, each being the ratio of reflected to
incident light within one of the three virtual wavelength
bands defined for i ¼ 1,2,3.

Here we see the link with Retinex theory, in which
Land (1964) proposed a similar definition of surface
color. He called the sensor response triplet for light
from a given surface divided by the triplet of responses
for light from a perfect white reflectance (which is
equivalent to taking the incident light itself) a color
designator. The difference in Land’s approach is that he
used LMS responses, hoping that color designators
would be approximately independent of illumination.
Philipona and O’Regan, on the other hand, used
responses of the recomposed virtual sensors defined
for each surface by Ts.

The Ts found by Philipona and O’Regan will
typically map the cone sensor functions into virtual
sensors which have more concentrated support in
certain wavelength regions: they are LMS type sensors
but appear spectrally sharper than the cones. Because
of this property they will more nearly have the property
that the associated color designators are independent of
illumination.

And here we see also the link to spectral sharpening.
In spectral sharpening various algorithms are designed
to make the reflectance term of Equation 10 as
independent of illumination as possible (Chong,
Gortler, & Zickler, 2007; Finlayson, Drew, & Funt,
1994b). However, unlike the Philipona and O’Regan
work, which returns biological color reflectance terms
using a different transformation matrix Ts for each
surface, spectral sharpening seeks a single transforma-
tion for all surfaces and lights. One of the main
contributions of this paper is to show that we can use a
single, carefully chosen, transformation T and predict
unique hue and color naming data equally well as the
Philipona and O’Regan approach which used a per
surface transformation Ts. Thus, and this is a
significant improvement over the original work, we

need not know the surface we are looking at in order to
apply the theory.

A second step in the Philipona and O’Regan
formulation concerns their singularity index. Philipona
and O’Regan calculated their biological reflectance
coefficients for the set of Munsell chips used in the
World Color Survey and noted that in certain cases,
one or two of the three Philipona and O’Regan
reflectance coefficients were close to zero. They called
surfaces with this property ‘‘singular,’’ because they
have the exceptional property of absorbing all light in
one or two of the three bands defined by the virtual
sensors. Such chips in some sense behave in a ‘‘simpler’’
fashion than other chips, because the variability of light
reflected off them can be described within one or two
bands, instead of needing three bands of light to be
described, as is usually the case. An implication of the
biological reflectance triple having two zeros (or two
values close to 0) is that under different lights only one
of the virtual responses changes. For example, a red
surface with a biological reflectance triple of (1,0,0)
implies a response under different lights of (k,0,0). That
is, in the sense that variability is restricted to a plane or
a line in 3-dimensional color space, one could say that
such chips are in some sense more stable under changes
of illumination, and might be easier to characterize,
leading to their being more frequently designated as
focal.

Philipona and O’Regan’s singularity index took the
biological reflectance triple rs and sorted its elements in
descending order. It then calculated the 2-vector bs:

bs
i ¼

rsi
rsiþ1

ði�1; 2Þ ð11Þ

If k1 and k2 are respectively the maximum first and
second beta components over a set of surfaces,
Philipona and O’Regan’s singularity index for a given
surface was defined as:

SPO ¼ max
bs
1

k1
;
bs
2

k2

� �
ð12Þ

SPO is large when one or more of the Philipona and
O’Regan biological reflectance components are rela-
tively very small. Philipona and O’Regan’s hypothesis
was that large singularity would correspond to colors
that would be likely to be given a focal name in a given
culture. Indeed, Philipona and O’Regan showed that
this was the case: a strong correlation was found
between the SPO of Equation 12 and the frequency with
which colors in the WCS dataset are considered
prototypical in different cultures. Philipona and O’Re-
gan also extended their analysis to the question of
unique hues and demonstrated that the singularity
index could predict the position of the wavelengths for
unique hues found classically in color psychophysics.
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Spectral sharpening to define a
more plausible biological model

The notion of spectral sharpening derives its roots
from Land’s retinex theory where there is a notion of
color designator defined similarly to Philipona and
O’Regan’s notion of biological reflectance: The LMS
triplet for an unknown surface under unknown light is
divided by the response of a white surface (under the
same light). In so doing the intent (or hope) is that the
light should ‘‘cancel’’ and the color designator should
be illuminant independent. However, designators cal-
culated for the original cone sensors are not optimally
illuminant independent. Thus the technique of Spectral
Sharpening is used to find a single transform of cone
responses with respect to which color designators are as
independent of the illuminant as possible. Such sensors
have sensitivities that are more narrowly concentrated
and less overlapping in the visible spectrum than those
of the original cones. Spectrally sharpened color
designators are similar to Philipona and O’Regan’s
notion of biological reflectance, except that a unique
transformation is used to create virtual responses,
instead of having a different transform for each surface.

Expressed formally, spectral sharpening (Finlayson,
Drew, & Funt, 1994a) seeks to find a single surface-
independent sharpening transform T such that over all
surfaces s:

ps;e ’ ðTÞ�1DsTwe ð13Þ

which implies

qs;e ¼ Tps;e ’ DsTwe ¼ Dsxe ð14Þ

Note that, in contradistinction to Philipona and
O’Regan, all surfaces share the same sharpening
transform (no dependency on s).

There is today a large amount of literature on how to
find the best transform T. In (Finlayson et al., 1994a)
the starting point for sharpening was exactly the
Equation 14. There it was shown that if reflectance
and illumination are respectively modeled by 2- and 3-
dimensional linear models (or the converse), then
Equation 14 holds exactly. This is a remarkable result
in two respects. First, using the statistical analysis
provided by Marimont and Wandell (1992) (that
modeled light and reflectance by how they projected
to form sensor responses) a 2-dimensional model for
illumination and a 3-dimensional model for surface
provides a tolerable model of real response data.
Second, this result provides a strong theoretical
argument for believing that a single sharp transform
can be used for all surfaces. Other optimization
methods exist for deriving sharp sensors from Equation
14 including Data-based sharpening (Finlayson et al.,
1994b), Tensor-based sharpening (Chong et al., 2007)
and Sensor-based sharpening (Finlayson et al., 1994b).
Figure 1 gives sharp sensors derived using these last
three methods together with the Smith-Pokorny cone
fundamentals (Smith & Pokorny, 1975).

It is clear from this figure that whereas the derived
sensors are similar, there is some variation in the
results: an observation which raises the question of
which sharp sensor set should be used. The question is
not immediately easy to answer. Indeed, the optimiza-

Figure 1. Sensitivities of sharp sensors found by the different methods. Data-based sharpening (dashed line), Tensor-based sharpening

(dotted line), and sensor-based sharpening (continuous line). Cone fundamentals are plotted in black.
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tions underlying the different sharpening techniques
developed hitherto were, in part, formulated so that an
optimal solution could be easily found. None of the
existing methods finds the sharp sensors which deliver
the maximally illuminant-invariant color designators.

Finding the optimal sharpening transform

Suppose we wish to compute the color designators
(Land, 1964) for n reflectances viewed under a D65
illuminant where we map cone responses to sharp
counterparts using the 3·3 sharpening matrix T. We
calculate the designator for the sth surface:

qs;D65 ¼ Tps;D65 ð15Þ

xD65 ¼ TwD65 ð16Þ
Dividing Equation 15 by Equation 16 gives the color
designator rs the components of which are:

rs;D65
i ¼ qs;D65

i

xD65
i

ð17Þ

In Equation 17 the color designator has D65 in the
superscript. This is because although we seek color
designators which are illuminant independent, we will
not achieve perfect invariance. Rather, as the illumi-
nant varies, so too will the computed designators. To
select the sensors giving the best illuminant indepen-
dence, we will work with each sensor separately; that is,
we will minimize each row of the matrix T individually
(we denote each row as Ti).

Let us define a vector vD65
i ¼ [rs1;D65

i ; � � � ; rsn;D65
i ]t

containing the designators defined in Equation 17 for
one of the sensors and a set of surface reflectances
under the D65 illuminant, and let vei ¼ [rs1;ei ; � � � ; rsn;ei ]t be
a vector containing the designators for the same
surfaces and the same sensor under another illuminant
e. The individual terms for both these vectors are the
responses of a single sharp sensor divided by the
responses of the light. As the illuminant changes, we
expect, for the best sharpening transform, that these
vectors of designators will be similar to one another.
Assuming m illuminants we seek the transform T which
minimizes:

minTi

1

m

Xm
e¼1

jj vD65
i � veijj
jj vD65

i jj
i ¼ 1; 2; 3 ð18Þ

To find T we shall use the Spherical Sampling
technique proposed by Finlayson and Susstrunk
(2001). This method treats the sharpening problem
combinatorially, defining all possible reasonable sharp-
ening transforms. Without recapitulating the detail,
their key insight was that only if two sensors are

sufficiently different (by a criterion amount) will this
difference impact strongly on color computations.
Indeed they argued that for spectral sharpening it
suffices only to consider linear combinations of the
cones resulting in sensors that are one or more degrees
apart. Using this insight, we find there are a discrete
number of possible sensors and a discrete number of
triplets of sensors. We simply take each of a finite set of
sharp sensors and find the red, green, and blue sharp
sensor that minimizes Equation 18. The minimization
was carried out using the WCS reflectances (a subset of
320 Munsell reflectances) and the same set of illumi-
nants as in Philipona and O’Regan’s paper (Chiao,
Cronin, & Osorio, 2000; Judd et al., 1964; Romero,
Garcia-Beltran, & Hernandez-Andres, 1997).

The optimal T transform we obtain starting with the
Smith-Pokorny cone fundamentals (Smith & Pokorny,
1975) is:

T ¼
2:6963 �2:3227 0:1559
�0:6620 2:0651 �0:3052
0:0543 �0:0976 1:7924

0
@

1
A ð19Þ

In Figure 2 we plot the corresponding sharp sensors in
solid red, green, and blue.

Significantly, we find that Philipona and O’Regan
biological reflectance functions (computed using a per
surface transformation to virtual sensors) and the color
designators (computed with respect to a single global
sharpening transform) are strongly correlated (0.9917).
Further we calculated the singularity index SPO on the
Philipona and O’Regan biological reflectances and the
sharp color designators. These too are correlated
(0.9251). While not identical, these high correlations
provide prima facie evidence that color designators
calculated with respect to a single sharpening transform
can be used instead of the per-surface biological

Figure 2. Sensors found using our approach.
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reflectance functions proposed by Philipona and
O’Regan (which are based on a per surface sharpening
transform).

Compact singularity index

The idea of Philipona and O’Regan’s singularity
index was intuitively clear: they wished the index to be
high when one or more of the color designator (or the
Philipona and O’Regan biological reflectance) values
are close to zero. However, to translate this idea into
procedural form required sorting the designator values,
calculating inter-band ratios, normalizing these ratios
and taking a maximum. Here we suggest a more
elegant, compact, singularity measure, which will also
turn out to have the advantage of being related to
chromaticness.

Let us begin by writing three terms which measure
the relative magnitude of one sensor response relative
to the triplet of three responses. Here we use r, g, and b
to denote the color designators calculated with respect
to our sharp sensitivities (rather than r1, r2, and r3).
Further, let us begin by considering singularity in each
color channel separately.

I1 ¼
r3

rgb
ð20Þ

I2 ¼
g3

rgb
ð21Þ

I3 ¼
b3

rgb
ð22Þ

By substituting test values into Equation 20 through
Equation 22 we see each individual equation imple-
ments, correctly, a per channel idea of singularity. As
an example, we can see that when r ’ 0 and g and b are

Figure 3. Munsell chips in the WCS data.

Figure 4. Psychophysical results of the WCS data.
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. . 0, then, I2 and I3 will be very large. We simply add
these three terms together to define our new Compact
Singularity Index:

SC ¼ I1 þ I2 þ I3 ¼
r3 þ b3 þ g3

rgb
ð23Þ

SC computes a single measure which is large when the
rgb designator has one or two values close to 0.
Further, the function is symmetric with each of r, g, and
b playing the same role. That is, unlike the Philipona
and O’Regan definition of singularity (see Equations
11, 12) we need not sort our sensor response or apply a
maximum function.

Compact singularity and chromaticness

While Equation 23 is simple (and as we shall see in
the next section also provides a useful lens through

which to view WCS color naming detail), it is
interesting to examine its structure and to relate it to
traditional color concepts. Let us modify our compact
singularity index:

SC ¼ r3 þ b3 þ g3

rgb
�
r3 þ b3 þ g3

rgb
� 3 ð24Þ

Then, we have

SC�
r3 þ b3 þ g3

rgb
� 3 ¼ r3 þ b3 þ g3 � 3rgb

rgb
ð25Þ

In this form, the numerator intuitively gives us a
measure of chromaticness: for achromatic surfaces,
where r¼g¼b, the numerator will be 0 (note that, since
we are dealing with designators, illumination effects
have been canceled out). In contrast, for any chromatic
surface the numerator will be positive, becoming bigger
as we move away from the achromatic axis. Signifi-
cantly, unlike traditional measures of saturation our

Figure 5. Comparison between the results obtained by Philipona and O’Regan in their paper (left) and our results using a single global

sharpening transform T and the compact singularity index (right). The solid patches of the bottom-plots represent the top 10% of the WCS

data.
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chromaticness measure is unbounded: as the rgb
becomes more and more saturated and the individual
channel values go toward zero, so our measure becomes
unboundedly large.

Predictions and results

In one task in the World Color Survey, an average of
24 native speakers of each of 110 unwritten languages
were shown a palette of 330 Munsell chips (see Figure
3) and asked to pick out the best (or ‘‘focal’’)
example(s) of the major color terms in their language.
Figure 4 shows the histogram and a contour plot of the
number of times a given chip was chosen as being such
a ‘‘focal’’ color. It is seen that there are four peaks,
corresponding to certain precise hues of ‘‘red,’’ ‘‘green,’’
‘‘blue,’’ and ‘‘yellow.’’ Thus these four hues have a
special status across a wide range of cultures.

A key idea in the Philipona and O’Regan work is
that colors that have a high singularity index should
correlate with colors frequently characterized as focal.
The results of Philipona and O’Regan are shown on the
left in Figure 5. From left to right the most kurtotic
peaks correspond to ‘‘red,’’ ‘‘yellow,’’ ‘‘green,’’ and
‘‘blue’’ (see Figure 3). At each chip location, the
singularity index for each surface is indicated. Clearly,

the general trend of the data is quite similar to Figure 4:
the singularity index increases and decreases in concert
with the WCS histogram, and the peaks are in similar
positions.

In the present paper we have proposed two
extensions of the Philipona and O’Regan work. First,
we have calculated color designators with respect to a
single sharpening transform (whereas in Philipona and
O’Regan’s work every surface has its own sharpening
transform); second we have used our simplified
Compact Singularity Index. The right hand histogram
in Figure 5 plots our Compact Singularity Index with
respect to the Munsell chips used in the WCS. As in
Philipona and O’Regan’s, the singularity peaks are in
close correspondence with the peaks of the WCS
naming histogram. There is a somewhat better corre-
spondence for ‘‘blue’’ compared to the predictions made
by Philipona and O’Regan using their singularity index.

In their paper Philipona and O’Regan also compared
their results to psychophysical experiments using
‘‘aperture colors.’’ ‘‘Aperture colors’’ are generated by
sending lights with controlled spectral composition
directly into the eye rather than by natural viewing of a
colored surface. In order to make their approach
compatible with the results of such experiments, and in
particular in order to find a singularity index for lights
instead of for surfaces, Philipona and O’Regan
conjectured that the nervous system interprets light

Dataset Subjects

Unique Yellow Unique Green

Mean (nm) Range (nm) Mean (nm) Range (nm)

Schefrin 50 577 568–589 509 488–536

Jordan-Mollon 97 — — 512 487–557

Volbrecht 100 — — 522 498–555

Webster (a) 51 576 572–580 544 491–565

Webster (b) 175 580 575–583 540 497–566

Webster (c) 105 576 571–581 539 493–567

Philipona and O’Regan’s SI prediction — 575 570–580 540 510–560

Our-model reflectances — 580 570–585 555 540–565

Our model-sharp sensors — 588 585–595 536 515–545

Dataset Subjects

Unique Blue Unique Red

Mean (nm) Range (nm) Mean (nm) Range (nm)

Schefrin 50 480 465–495 — —

Jordan-Mollon 97 — — — —

Volbrecht 100 — — — —

Webster (a) 51 477 467–485 EOS —

Webster (b) 175 479 474–485 605 596–700

Webster (c) 105 472 431–486 EOS —

Philipona and O’Regan’s SI prediction — 465 450–480 625 590-EOS

Our-model reflectances — 470 460–480 615 600-EOS

Our model-sharp sensors — 464 454–470 607 600–640

Table 1. Unique hues found in the different experiments and the prediction from our model using a new sensor basis along with the new

CSI index. EOS means End Of Spectrum.
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from aperture colors as though it corresponded to light
coming from colored surfaces illuminated by white
light. As referent for white light they chose D65.

Thus, when illuminated with D65 light, the Munsell
chips used in the WCS can be considered to be aperture
light sources whose coordinates can be plotted as
points in the usual CIE or LMS spaces. For each such
light Philipona and O’Regan plotted the singularity of
the corresponding Munsell chip, and observed that
crests of singularity appeared in the CIE or LMS
spaces, which, when extended out to the monochro-
matic locus, gave predictions for what should be the
most singular monochromatic lights. These singular
monochromatic lights corresponded very precisely to
the so-called ‘‘unique hues’’ observed in psychophysical
measurements (see Table 1). The range of variation
observed in existing experiments measuring unique

hues could also be explained by the width of the areas
of singularity defined by Philipona and O’Regan’s
procedure.

Figure 6 shows the results obtained when applying
exactly the same method as Philipona and O’Regan to
link aperture colors to Munsell chips, with the
difference that we use our sharp sensors and our
compact singularity index. In Figure 6a we have a 3D
plot of the singularity corresponding to 1600 Munsell
chips (Joensuu, n.d.), each with the CIE value of the
light it reflects when illuminated by D65 daylight. In
Figure 6b we are looking at the x-y projection of the
figure, and we have circled the four local maxima of the
plot. We have connected these maxima to the neutral
point, and extrapolated out to the monochromatic
locus where we predict the unique hues should be. As
seen in Table 1, our predictions are very close to
Philipona and O’Regan’s, and very close to the
empirical data. The range of expected variation of the
unique hues can be estimated in our approach by
taking the range over which our compact singularity
index exceeds some threshold. The range shown in the
Table is obtained using a threshold of 15% of the
maxima of each different mountain. It also corresponds
accurately to the range of unique hues found in the
empirical data. However, we should note the existence
of the Abney effect: there is some curvature in the lines
of perceived hue in the chromaticity diagram. There-
fore, our table shows an approximation of the hues.

It is worth noting that in our approach, in contrast
to Philipona and O’Regan’s, there is a more direct
method of obtaining unique hue predictions. Instead of
extrapolating the LMS values of singular Munsell chips
seen under white light out to the monochromatic locus,
we can calculate directly the singularity of monochro-
matic lights. To do this, we again assume that the color
designator associated with a light giving a particular
sensor response is simply the designator of a surface
illuminated by white light that would give that same
sensor response. We can now get the designator
associated with monochromatic lights by calculating
the sharp sensor response to the monochromatic lights,
and dividing by the sharp sensor response to white
light. For this we have used D65 light. From the
designator we can now calculate the singularity, using
our compact singularity index. Figure 7 shows this
index for all monochromatic lights. We see that there
are extrema corresponding closely to the unique hues
(see Table 1, last row) and in agreement with the more
indirect method of calculation. It is interesting that the
singularity in the green region is spread between about
520 and 535 nm.

Philipona and O’Regan were also able to explain hue
cancellation phenomena in their paper. Hue cancella-
tion quantifies the fact that the addition to a light that
appears bluish, of a certain amount of light that

Figure 6. (a) Plot in x, y space for our new compact singularity

index (CSI) for the 1600 Munsell chips. (b) Projection of the

compact singularity index and the locus of monochromatic lights.
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appears yellowish produces a light that appears neither
bluish nor yellowish, and the same for lights that
appear reddish or greenish (Jameson & Hurvich, 1955).
Note that we are able to explain this data in the same
manner Philipona and O’Regan did, by reference to the
singularity of Munsell surfaces, transformed into CIE
or LMS coordinates by illuminating them with white

D65 light. But more interestingly, we are also able to
explain the data as an opponent calculation from our
spectrally sharp sensors.

First note that the relative peak sensitivity of our
sensors is not fixed in all our previous computations
(each sensor was derived independently). We can
therefore adjust the peak sensitivities in order to fit

Figure 7. Unique hues plot computed from the sharp sensors.

Figure 8. Hue cancellation prediction for our index. Left, the normalized sensors found to predict the data. Right, straight lines are our

prediction (from an opponent conversion); data symbols represent Jameson and Hurvich data.
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the Jameson and Hurvich data. To this end, we have
run an optimization to minimize the root mean square
error between the Jameson and Hurvich data and our
prediction. We do this minimization in two steps. First,
we deal with the red-green cancellation by optimizing
for aR-bG. The optimal values we obtain are a ¼ 0.56
and b¼0.77. Second, with these values of a and b fixed,
we move to the blue-yellow equilibrium, minimizing
d(aR-bG)-(2d)cB. The -(2d)c term is defined in this way
to have d regarding the opponency and c regarding the
amplitude of the blue sensor. In this way, d allows us to
adapt the blue-yellow opponency away from the more
usual d ¼ 1. Following this approach we obtain c ¼
0.4860.

In Figure 8 we can see the new sensor amplitudes
and the resulting optimal prediction of the Jameson
and Hurvich data, which has d ¼ 0.6477; that is, the
blue-yellow opponency is defined as 0.6477(RcþGc)-
1,2954Bc (already with the amplitude-corrected sensors
Rc, Gc, Bc). The two cancellation curves show, on the
one hand, the intensity of a monochromatic yellow
light that must be added to a bluish light so that the
corresponding stimulus is on the locus defining a
unique hue different from yellow or blue, and on the
other hand the same thing for red and green lights.

Our final experiment deals with hue equilibrium.
Thanks to our account of the loci of unique hues from
singular surface reflection properties, we (as did
Philipona and O’Regan) compare our results to the
hue equilibrium experiment of Chichilnisky and Wan-
dell (1999). In that experiment, Chichilnisky and
Wandell looked for the region of the space where a
sensation is neither bluish nor yellowish, and similarly,
the region of the space where the sensation is neither
reddish nor greenish. Figure 9 provides comparison of
Chichilnisky and Wandell’s data with the results using
Philipona and O’Regan’s approach (Figure 9a), and
with the results obtained using the Compact Singularity
Index following the Philipona and O’Regan reflectance
procedure (Figure 9b). In these graphs the data
symbols represent Chichilnisky and Wandell’s data
for subject es while the solid lines represent the
predictions using estimations of unique hues shown in
Table 1. We can see that our predictions are about as
close to the experimental data as those obtained from
Philipona and O’Regan’s approach. Finally, predic-
tions using unique hues found by sharp sensors are
shown in Figure 9c.

Figure 9. Hue equilibrium prediction. (a) Philipona and O’Regan

singularity index. (b) Our compact singularity index with the

reflectance procedure. (c) our compact singularity index with the

sharp sensors approach. Crosses and triangles are the Chichil-

niski and Wandell data for their Subject es. Straight lines

represent the estimations.
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Conclusions

Philipona and O’Regan suggested an interesting way
of understanding psychophysical data on unique hues
and anthropological data on cross-cultural color
naming in terms of the linear mapping that describes
how reflecting surfaces modify the LMS cone catches of
the light that falls on them.

Their approach defined as ‘‘singular,’’ those surfaces
that have the property that they project incoming LMS
values into a 1- or 2-dimensional subspace of the 3-
dimensional LMS space. They showed that singular
surfaces accurately correspond to surfaces in anthro-
pological data that are most frequently considered
prototypical in many cultures throughout the world.
Singular surfaces are also those that, when illuminated
with white light, accurately correspond to hues that
appear to be pure or ‘‘unique.’’ Hue cancellation and
opponent color matching is also accurately accounted
for by Philipona and O’Regan’s approach, without any
parameter adjustments.

The main novelty of the present paper is to provide a
way of interpreting Philipona and O’Regan’s approach
in terms of spectral sharpening theory. We show that
by replacing the normal LMS sensors by a particular
set of sharp sensors, Philipona and O’Regan’s notion of
singularity can be interpreted as corresponding to lights
that activate only one or two, but not three, of the
sharp sensors. We show that a single, unique, set of
sharp sensors satisfactorily accounts for all the data
presented in Philipona and O’Regan’s earlier work. In
this way, we increase the biological plausibility of the
model.

Importantly, in developing our new theory we define
a new singularity index which is more compact than
Philipona and O’Regan’s and which establishes a clear
link to the idea of chromaticness. Singular colors are
colors which have high chromaticness on this measure.
Our approach provides estimates of color naming,
unique hues, hue cancellation, and opponent color
matching which are as accurate if not more accurate
than Philipona and O’Regan’s.
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