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Abstract

Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for

each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges). A common problem is to combine similarities

coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description

that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture

is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a

3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us

to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover,

our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image

representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex

images; (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing

by bridging semantic gap.
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1. Introduction

Due to the growth in size of image collections and the need

to retrieve semantically-relevant images from them, the devel-

opment of effective systems for image retrieval has acquired

great importance since the early 90s. Since then, the studies

on the development of content-based image retrieval systems

have widely increased. The goal of these content-based im-

age retrieval (CBIR) systems is to represent and to index im-

age databases using the visual content of the images such as

color, shape, texture and spatial layout, so low-level image fea-

ture extraction is the basis of CBIR systems. Usually multi-

dimensional feature vectors are used to describe these contents.

The descriptors can either be extracted from the entire image

or from regions. In the first case, the image is often character-

ized by its histogram thus obtaining a global image description.

In the second case, image regions are obtained partitioning the

image into tiles from which features are extracted; this is a way

of representing the global features of the image at a finer res-

olution [1, 2]. The most important drawback to extract image

visual content of both methods has been the inability to capture

semantic content.

A better method to obtain regions is to use segmentation al-

gorithms to divide images into homogeneous regions according

to some criteria that discriminate between different entities of

the image. This is the first step of all region-based image re-

trieval systems (RBIR). Then some descriptors are defined so
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that the retrieval can be performed [3, 4, 5, 6, 7]. These meth-

ods have significantly improved retrieval results, but they are

still different from the results obtained by humans.

The main problem of current retrieval systems simulating the

search performed by a human subject is the difference between

human description of the queried image and the level of de-

scription (the extracted information) of retrieval system. Hu-

man subjects use high level concepts (and words) to identify

elements of the image, actions or situations, whereas retrieval

methods extract low level features (i.e. color, texture, shape,

etc). The difference between these description levels is known

as the ‘semantic gap’ [2]. One way to reduce the ‘semantic

gap’, pointed out by Liu et al. [8] in their survey on CBIR sys-

tems, is the use of object ontology to define high-level con-

cepts. This requires to obtain objects/entities of images. Some

works have studied this issue in narrow application domains

[9, 10, 11, 12]. Another way would be to define descriptors

presenting the image components in linguistic terms, which is

one of the goals of this paper.

Recently, the bag-of-words model uses image features as ’vi-

sual words’ [13] of a wide vocabulary, mapped onto image cat-

egories by machine learning techniques [14]. The learning pro-

cess deals with the whole width of the semantic gap. These

approaches achieves important results in general categorization

of scenes or objects even when the vocabulary is based on low-

level features. One question that arise from our work is how

these techniques could improve the results by introducing more

semantic information in their vocabularies.

In the specific cases of color and texture, the most usual de-
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scriptors are low-level features combined with shape or spa-

tial location features. Descriptors are sometimes obtained from

histograms [3, 15, 9, 16]. Other color descriptors capture the

spatial color distributions: color layout (CLD) and color struc-

ture (CSD) descriptors. These last descriptors and descriptors

obtained from histograms are included in the MPEG-7 [17]

as standard color descriptors. In regard to texture descriptors,

there are different sets of features, for example, wavelet features

using Gabor filters [15, 18, 17, 7] or rotated complex wavelet

filters [19], both define the multiscale descriptor as a vector

containing energy and energy deviations before the correspond-

ing filter is applied to the image. Liu and Picard [4] developed

the ’Wold’ features which distinguish between ’structured’ and

’random’ texture components. The former correspond to the

peak magnitudes of image autocovariance and the latter are the

MRSAR (Multiresolution simultaneous autoregressive model)

estimated coefficients. Barcelos et al. [20] define a texture de-

scriptor based on the modal matrix that represent the frequency

space of an image consisting of eigenvectors that measure the

proximity among points set of the quantized power spectrum of

image. The modal matrix is their texture descriptor. Zhong and

Jain [21]’s color and texture descriptor is a vector that contains

some coefficients of the DCT (Discrete Cosine Transform) in

JPEG image format. Lazebnik et al. [22] defined the RIFT de-

scriptor as an sparse representation of the SIFT [23] that tries

to cope with image textons assuring rotation invariance. All of

these descriptors do not directly map the set of properties they

extract to words describing the image.

If we focus on the problem of descriptors that can be mapped

to real words, few descriptors have been developed. Most of

them are generally related to color properties. Carson et al.

[24] extracts two dominant colors from each region; Mojsilovic

et al. [25] and Ma and Manjunath [5] from different codebooks,

build feature vectors with the dominant colors and its corre-

sponding occurrence percentage within the image. Smith and

Chang [26], using a sparse binary vector representation of color

sets, allow users to specify the color content within images by

picking colors from a color chooser or by textual specification.

Finally, Benavente et al. [27] proposed a fuzzy set model that

directly maps colors to the eleven English basic color names.

In the case of texture descriptors mapping words, Manjunath

et al. [28] developed the PBC, which consist of three percep-

tual features: regularity, directionality and scale represented by

bounded values. These features are related to the three most

important perceptual dimensions in natural texture discrimina-

tion ’repetitiveness, directionality and granularity’ identified by

Rao and Lohse [29] in a psychophysical experiment. Recently,

Salvatella and Vanrell [30] proposed a sparse texture descriptor

that is based on describing texture through their blob attributes,

this is the starting point of the proposal of this paper.

Focusing on the previous idea of mapping descriptors onto

words we founded more recent works on image annotation

[31, 32, 33, 34], these works follow a top-down methodology

essentially based on machine learning techniques. The main

focus relies on the accuracy on predicting good annotations by

learning from previously annotated images, usually based on

standard descriptors commonly used.

Here in this work we go back to the descriptor definition

step by proposing a compact descriptor called Texture Com-

ponent Descriptor, which deals with the annotation of color-

textures without any learning step. Our descriptor relies on a

pure bottom-up approach where feature selection is inspired on

perceptual assumptions. We justify this backtracking to the de-

scriptor definition because we can achieve two desired prop-

erties: the descriptor is low dimensional and comprehensive.

This is, it is based on six dimensions with a direct perceptual

correlation each. These properties can be achieved since we

substitute machine learning effectiveness by strong perceptual

assumptions. These are directly derived from the texton theory

[35] which is complemented with perceptual grouping mecha-

nisms capturing patterns emerging from the repetition of local

attributes [36].

The paper is organized as follows: in section 2 we review the

perceptual considerations justifying the attribute space where

the descriptor is based on. In section 3 we propose a descrip-

tor Texture Component Descriptor (TCD) derived from a 6D

space that is an early fusion of a 3D blob space and a 3D color

space. The next sections will explore the comprehensive na-

ture of the proposed descriptor: in section 3.1 we propose a

dense image representation for image segmentation, and in sec-

tion 4 we define a grammar that translate our descriptor to basic

linguistic terms that can improve it in browsing applications.

Afterwards, section 5 compiles all the experiments that evalu-

ates our approach. The first experiment demonstrates that our

descriptor achieves similar performance to current best descrip-

tors in retrieval; we compare our TCD to MPEG-7 in standard

Corel datasets. Subsequent experiments explore the behavior of

the descriptor from a qualitative point of view showing its fea-

sibility in segmentation and browsing applications. In the last

section we summarize the proposal and outline further work.

2. Texture and blobs

Texture representation has been the focus of a large amount

of research in Psychophysics [37, 36, 35, 29] too. Two differ-

ent schools of thought in the study of texture segregation have

converged in their final conclusions. Both first-order statistics

of local features and global spatial considerations are needed

for a full representation. The present work is based on the tex-

ton theory of Julesz and Bergen [35] as the basis for the first

steps in texture perception. After different conjectures, in 1983

Julesz proposed this theory that states three heuristics. First,

texture discrimination is a preattentive visual task. Second, tex-

tons are the attributes of elongated blobs, terminators and cross-

ings. Third, preattentive vision directs attentive vision to the

location where differences in density of textons occur, ignoring

positional relationships between textons. Finally, he gives an

explicit example of textons in this way: ”elongated blobs of

different widths or lengths are different textons”. In summary,

Texton theory concludes that preattentive texture discrimina-

tion is achieved by differences in first-order statistics of textons,

which are defined as line-segments, blobs, crossings or termi-

nators and their attributes: width, length, orientation and color.
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(a) Blue Bluish-grey

Original vertical oriented vertical oriented

Image large blobs large blobs

(b) Yellowish-orange Green Green Dark blue Dark blue Dark blue

Original non-oriented non-oriented non-oriented non-oriented non-oriented right oriented

Image medium blobs medium blobs small blobs medium blobs small blobs small blobs

Figure 1: Textures components and their description

This perceptual theory is the consequence of an exhaustive

study on local texture properties provoking preattentive texture

discrimination in experimental conditions. In this work we pro-

pose to use these powerful results derived from a large psy-

chophysical experimentation trying to prove different conjec-

tures. These results allow us to substitute the usual training step

on annotated image datasets of most computational approaches.

Our hypothesis is based on the fact that these perceptual fea-

tures can be encoding the efficiency of human visual represen-

tation. With the same goal, an early computational implemen-

tation of texton theory was done by Voorhees and Poggio [38],

blob attributes on grey level images were used to determine

boundaries between textures. In this work we propose to con-

tinue the work of Voorhees and Poggio [38] by updating it with

recent computational operators [39] using color attributes [40]

and inserting one further step that simulate a grouping mech-

anism onto the attributes that captures emergent repetitiveness

[36].

Apart from the assumption that a texture can be described by

their blob attributes, we also assume that a texture is provided

by the existence of groups of similar blobs. This is the basis

of the repetitiveness nature of texture images. Although a de-

scription based on blobs can be incomplete, the advantage of

our proposal is that it gives a further step in reducing semantic

gap. We are able to assign a basic semantic meaning to these

blob low-level features by translating blob attributes to linguis-

tic terms. Some examples of this proposal can be seen in Fig.

1. In image (a) a striped texture is described by two different

types of blobs: blue elongated blobs and grey elongated blobs.

In the same figure, texture (b) can be described in terms of 6

different types of blobs: blue, green and orange, of different

sizes and shapes. The groups of blobs sharing similar features

(size, orientation and color) is called texture components, and

the texture description is obtained by joining the descriptions

of these components. In the next sections we give a metric for

this descriptor and a translation procedure to get the linguistic

terms.

2.1. Blob components

To obtain the image’s blob we use the same approach given

in [30], which is based on the differential operators in the scale-

space representation proposed by Lindeberg [41]. Assuming

that image blobs have a Gaussian shape, we use the normalized

differential Laplacian of Gaussian operator to detect the blobs

of the image I,

∇2
norm Lσ = σ

2∇2Lσ (1)

being Lσ(I) = I ∗G(·;σ). This operator also allows us to obtain

the scale and the location of the blobs. The aspect-ratio and ori-

entation of non-isotropic blobs are obtained from the eigenvec-

tors and eigenvalues of the windowed second moment matrix

[41].

To obtain the blob components of the color image, we apply

the previously defined differential operators to the color chan-

nels. Since blob information emerge from both intensity and

chromaticity variations, we use the opponent color representa-

tion that separates these two color dimensions. The first compo-

nent of the opponent color space is intensity, I = (R + G + B)/3,

and the other two are red-green, and blue-yellow chromaticity

dimensions, which are given by
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where r, g and b are normalized chromatic components,

which are invariant to intensity changes and are given by

r = R/(R + G + B), g = G/(R + G + B) and b = B/(R + G + B).

R, G and B are respectively the Red, Green and Blue compo-

nents of the RGB space of the original image.

Detecting blobs on this opponent space implies some redun-

dancy since a blob could be detected in any of the three chan-

nels. This redundancy has been eliminated by a perceptual

filtering process, selecting the blobs of higher filter response

(∇2
norm Lσ) from those that overlap. Thus, this detection step

provides us with a list of blobs and their attributes that we refer

as Blob Components (BC), which are given in matrix form as:

B = [BlocBshaBcol] (3)

where B is formed by joining three matrices: Bloc which is the

location of the blobs, Bsha contains their shape attributes and
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Figure 2: Shape-orientation blob space in cylindrical coordinates.

Bcol contains their color attributes. These matrices can be de-

fined as:

Bloc = [XY] (4)

where XT = [x1 . . . xn],YT = [y1 . . . yn], being (x j, y j) the loca-

tion of the center of j-th blob and n the number of blobs,

Bsha = [WLΘ] (5)

where WT = [w1 . . .wn], LT = [l1 . . . ln], ΘT = [θ1 . . . θn] being

(w j, l j, θ j) shape attributes of the j-th blob (width, length and

the orientation, respectively), and

Bcol = [I RG BY] (6)

where I
T
= [i1 . . . in], RG

T
= [rg1 . . . rgn], BY

T
= [by1 . . .byn]

being (i j, rg j, by j) color attributes of the j-th blob (median of

the intensity and chromaticity of the pixels that form the blob,

respectively).

3. Textural Component descriptor

Once we have the Blob Components of the image we aim to

group blobs with similar features (i.e. shape-orientation (w, l, θ)

and color (i, rg, by)) in order to obtain the different Textural

Components (TC) of the image. We use a uniform space sim-

ilar to uniform spaces defined in color science to perform this

grouping, where the distance between two points can be consid-

ered proportional to their perceptual difference. Since color and

shape are independent features, we propose to use two different

spaces to represent these blob attributes: one space to repre-

sent shape-orientation and another to represent the color of the

blobs. The uniform three-dimensional space used to represent

shape-orientation is similar to blob space as defined in [30].

They proposed a three dimensional cylindrical space where two

axes represent the shape of the blob (aspect-ratio and area) and

the third axis represents its orientation. The space we have used

can be seen in Fig. 2.

The perceptual shape-orientation space is obtained by per-

forming a non linear transformation U,

U : ℝ
3 → ℝ

3

(w, l, θ) → (r, z, φ)
(7)

Figure 3: HSI color space.

where r = log(ar), z = log(A) and φ = 2θ, being ar the blob

aspect ratio (ar = w/l), A its area (area = w · l) and θ its orien-

tation.

We should stress that in this space valid blobs are located inside

the cone delimited by the angle αmax = π/4 shown in figure 2,

since this space defines the blob width as the shorter of the two

lengths that characterize the blob.

The best color space to represent the color attributes of blobs

would be the uniform and calibrated CIE-Lab space, but since

the images we use are not calibrated we have chosen the HSI

color space for two reasons: first, it is similar to uniform color

spaces and has some correlation with the human perception of

color and second, it is defined on cylindrical coordinates as the

blob space defined above. This latter feature is interesting for

the next process of grouping. We have used the color transform

given in Gonzalez and Woods [42], where:

HS I : ℝ
3 → ℝ

3

(R,G, B) → (h, s, i)
(8)

This space can be seen in Fig. 3. Color differences are com-

puted as Euclidean distances in Cartesian coordinates (s·cos(h),

s · sin(h), i).

Considering the properties of these two spaces we state that

similar blobs are placed on different unidimensional varieties,

lines, rings or arcs. To group blobs of similar shapes and colors

we use a clustering method that groups data with these points

distributions and, at the same time, makes it possible to com-

bine spaces with different characteristics, specifically color and

shape-orientation. The clustering algorithm that has these prop-

erties is the Normalized Cut (N-cut) [43], which obtains the

clusters by partitioning a graph in a recursive way, until the

N-cut value exceeds a certain limit. This is the only parame-

ter of the algorithm that determines the number of clusters ob-

tained. In the graph, the nodes are the points of the feature

space and the edges between the nodes have a weight equal to

the similarity between nodes. A distance measure needs to be

defined to determine the similarity between the nodes. Since the

shape-orientation space has been designed to be uniform and

the HSI color space is almost uniform, it is reasonable to use

the Euclidean distance. Plataniotis and Venetsanopoulos [44]

performs an experiment where they conclude that this distance

used on the HSI color space is more discriminating, in color
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difference, than Canberra and Minkowski’s distance measures.

The N-Cut clustering algorithm can be defined as

NCUT ([U(Bsha),HS I(Bcol)],Ω) = {B̂1, B̂2, . . . , B̂k} (9)

where,Ω is the weight matrix, and its elements define the simi-

larity between two nodes through the calculation of the distance

in each one of the spaces (shape-orientation and color) in an in-

dependent way. These weights are defined as,

ωpq = exp−
‖U(Bsha)p − U(Bsha)q‖

2
2

σ2
sha

· exp−
‖HS I(Bcol)p − HS I(Bcol)q‖

2
2

σ2
col

(10)

This weight represents the similarity between blob p and

blob q that depends on the similarity of its shape-orientation

features and the similarity of its color features. U(Bsha)p

and HS I(Bcol)p are the p-th row of the matrices U(Bsha) and

HS I(Bcol) respectively. Shi and Malik [43] defined σ as the

percentage of the total range of the feature distance function. In

our case, σsha is defined in the shape-orientation space and σcol

in the color space. We have empirically fixed these values as

the 12 and 16 % of the range of the shape-orientation and color

distance respectively.

The result of the clustering obtained by the N-cut algorithm

is represented by B̂i, ∀i = 1, ..., k (where k is the total number

of clusters). It is the i-th class of the clustering process that will

be the i-th texture component, this comprises,

B̂i = [B̂i
locB̂i

shaB̂i
col] (11)

where B̂i
loc
= [XiY i], B̂i

sha
= [RiZiΦi] and B̂i

col
= [HiS iIi], being

Xi ⊂ X a subset of X defined by those elements belonging to

cluster i and the rest of the terms Y i, Ri, Zi, Φi, Hi, S i and Ii are

defined in an equivalent way.

These clusters of blobs with similar attributes, B̂i, are the

basis for our descriptor, named Texture Component Descriptor

(TCD), that for a given image it is denoted as

TCD = {TCD1, . . . , TCDi, . . . , TCDk} (12)

where each TCDi is given by the blob attributes of the proto-

type for each texture component or cluster. This prototype is

computed by estimating the median of all the blob attributes in

that cluster, [B̂i
sha

B̂i
col

]. This give a 6-dimensional description

for each cluster or TC:

TCDi = (ri, zi, φi, hi, si, ii) (13)

In this way the descriptors of an image are the shape-

orientation (3D) and color attributes (3D) of its TC.

3.1. Dense representation

Once the image has been decomposed in its textural compo-

nents (set of blobs with similar characteristics, see Fig. 4), we

build the dense image representation. To this end, we expand

the properties of each textural component (B̂i) to all the pixels

in the influence area of its blobs. This influence area is the im-

age region containing the group of blobs that form the texture

component.

To obtain the influence area of a textural component, we es-

timate the periodic distance between its blobs since we know

the spatial location of blob centres. The maximum frequency

of the blob distance matrix provide this period estimation for

each textural component,

pi = arg max
d

(Hist(DTi)),∀i = 1, 2, . . . k (14)

where d ∈ DTi, that is the distance matrix between all blob

centres of the i-th texture component, B̂i
loc

, and Hist is the his-

togram.

To assign an image pixel to a textural component from its de-

tected blobs we build a binary image IB̂i where pixels belonging

to the detected blobs are set to one. Afterwards, we perform a

morphological closing operation [45] to expand the blob prop-

erties to all the points in its influence area which is given by the

estimated period, this is

ICi = ((IB̂i ⊕ EEpi
) ⊖ EEpi

),∀i = 1, 2, ...k (15)

where EEpi
is a circular structuring element with radius pi/2,

that creates compact regions containing blobs with similar

shapes, orientations and colors, and their neighboring pixels.

The radius of the structuring element has coped with the spatial

structure derived from the period of its blobs. The expansion of

the blob properties is inspired in the intracortical inhibition step

of Malik and Perona [46].

In this way, we obtain a k-dimensional image representation

(being k the number of textural components of the image) that is

our blob-based dense image representation (BR). Every pixel of

this image representation is given by a feature vector of k com-

ponents (being every component a binary value), which repre-

sents the membership to a specific texture component, given by

its TCD descriptor. In the bottom part of the Fig.4 we show an

example of a pixel representation.

4. A basic color-texture vocabulary

In this work we take a first step towards the construction of a

vocabulary of basic terms in natural language, for color texture.

We propose to use plain English words to describe geometry

and photometry of the image blobs. Since a texture is described

by a list of texture components each defined by their blob at-

tributes, we can build one linguistic phrase to describe these at-

tributes. Thus a complete description of a color texture is given

by a list of phrases explaining the texture parts. Although this

description does not bridge all the semantic gap, it gives an im-

portant step in providing semantic properties that is new in the

frame of texture research.
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Figure 4: The stages of the blob-based dense image representation proposed.
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Following this we detail a procedure for an automatic trans-

lation of the TCD descriptor (given in equation 12 for texture

components) to phrases. To do this, we first introduce the basic

terms we use as vocabularies for each blob attribute,

Color 11 terms defined by Berlin and Kay [47] and modeled

by Benavente et al. [27]. Moreover, we will use the same

11 basic terms with the -ish modifier.

Intensity 2 terms (Dark or Light) to modify the basic terms of

color. They are computed on the intensity component and

are specific for each basic color.

Shape 2 terms to describe shape of blobs, which are non-

oriented, to refer to isotropic or near isotropic blobs, and

oriented to refer to elongated blobs.

Size 3 terms to describe size of blobs: small, medium and

large.

Orientation 4 different modifiers to describe the orientation of

the elongated blobs; we have simplified them by using the

following terms: horizontal (≈ 0◦), right (≈ 45◦), vertical

(≈ 90◦) and left (≈ 135◦).

Second, we give a syntax to systematically translate from tex-

ture component to phrases. It is given by the following gram-

mar, in BNF (Backus Naur Form), and using previous vocabu-

laries:

Texture description := Texture component [’,’ Texture description]

Texture component := Color description Shape description ’blobs’

Color description := [′Dark ′ | ′Light ′]

Basic term |Basic termish–Basic term |Basic term–Basic term

Basic term := ′red′ | ′orange′ | ′brown′ | ′yellow′ | ′green′ | ′blue′

| ′purple′ | ′pink′ | ′black′ | ′grey′ | ′white′

Basic termish := ′reddish′ | ′orangish′ | ′brownish′ | ′yellowish′

| ′greenish′ | ′bluish′ | ′purplish′ | ′pinkish′ | ′blackish′

| ′greyish′ | ′whitish′

Shape description := Orientation description Size description

Orientation description := [ ′Non–Oriented′ |

Basic orientation ′Oriented′]

Basic orientation := ′horizontal′ | ′right′ | ′vertical′ | ′le f t′

Size description := ′small′ | ′medium′ | ′large′

To select the terms from the values of the TCD we have used

different criteria. For color description we assign names based

on the fuzzy system defined by Benavente et al. [48]. In this

frame the 11 basic terms are parameterized by sigmoid func-

tions that assign membership values to each color term. A

unique color term is assigned if its membership is high, that

is, we consider it a pure color. For non pure colors we use just

the first two greatest memberships, e.g. colors are in boundaries

of just two color terms and therefore a bi-lexemic term is used

(hyphen form). If one of the two memberships is still predom-

inant we use the -ish modifier for the non-predominant color,

otherwise we use the two basic terms. Moreover, color descrip-

tion can be modified by an intensity term as dark or light, in this

case the term refers to the position of the color in the intensity

axis. Dark modifiers are assigned to intensities over the 90% of

the color intensity, and Light modifiers are for intensities under

the 10%.

For shape description we have used highly simplified vocab-

ularies. Shape is constrained to two simple forms of blobs, ori-

entation is sampled to four terms, and size is reduced to three.

With regard to size, our descriptor is not scale-invariant (blob

areas are computed in pixels). Therefore, the assignment of size

terms will be dependent on image size and this is an important

point to be considered to form queries. Size specified in a query

has to be adjusted to the relative size of the pattern within the

image.

Thus this previous grammar with the introduced criteria pro-

vide impossible color combinations (such as whitish-white or

dark black). After removing these useless color descriptions

we have a semantic dictionary of approximately 2085 phrases

to explain texture components. Several examples of these de-

scriptions are shown in figures 1, 4, 10 and 11.

5. Experiments

To evaluate our descriptor we have done three different ex-

periments. In Experiment 1 we test its efficiency in coping sim-

ilarity in an image retrieval application, in Experiment 2, we

prove the feasibility of its dense representation to be used to

locate textures in images, and in Experiment 3, we do a qualita-

tive exploration of the proposed vocabulary that can be derived

from the descriptor.

To perform the experiments we have built our specific dataset

of images coming from different databases. The selection of

images was based on the criteria of having homogeneous tex-

tures to preserve the same appearance in any subimage of the

given image. With this property we assure that errors in re-

trieval would only be due to the descriptor and not to inhomoge-

neous properties of the texture images (such us inhomogeneous

lighting or background).

Next, we detail the sources and how the dataset has been

built:

• Mayang’s Texture database1. 59 images have been se-

lected, they can be seen in Fig. 5(a). We extracted 354

subimages by taking 6 sub-images of every image.

• Outex database [49]. 6 images randomly selected from

each one of the 16 original textures (in Fig. 5(b), ex-

tracted from Outex-TC-00013) obtaining 96 images for

our dataset.

• VisTex database2. We selected 5 images (shown in Fig.

5(c)), commonly used in these experiments and we ob-

tained 30 images for our dataset.

1Dataset by W. Smith and A.M. Murni, 2001.

http://www.mayang.com/textures/
2MIT Media Lab, Vision Texture-VisTex database, 1995.

http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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(a)

(b) (c)

Figure 5: Images in our dataset. (a) From Mayang database. (b) From the Outex database. (c) From VisTex database.

Thus, the dataset has 480 images (the resolution of the sam-

ples is 100 x 100 pixels) of 80 textures. We stress that whereas

all images in the Outex database were acquired in an strictly

controlled environment (known illumination sources and imag-

ing geometry), the rest of the images were acquired under non

controlled conditions.

5.1. Experiment 1

In this experiment we evaluate the performance of TCD de-

scriptor in image retrieval. In order to do so we compute the

distance between images and we need to use an adequate simi-

larity measure bearing the following consideration: images can

have different number of Textural Components (TC) (see equa-

tion 12) where the number of components (or clusters) depends

on the complexity of image content, this is automatically de-

termined by the clustering algorithm. We have used the Earth

Mover’s Distance (EMD) [50] that fulfills this consideration.

This metric requires to define a ground distance between two

clusters. In our case this corresponds to the distance between

two components of a TCD. Below we define this ground dis-

tance by combining with a weighting parameters the two feature

spaces (shape-orientation and color) in the following manner:

d(TCDi, TCD j) =α · dshape(TCDi, TCD j)

+ β · dcolor(TCDi, TCD j)

where dshape and dcolor are Euclidean distances in the shape-

orientation space and color space, respectively, that are de-

rived from the uniform property of both spaces. Each dis-

tance has been normalized; this is possible because our fea-

ture spaces are bounded independently of the image content.

Shape-orientation space has the limits of blob attributes and

color space is bounded by the maximum luminance. The pa-

rameters α and β are weighting these two distances. To obtain a

good estimation of these two parameters it would be necessary

to perform additional psychophysical experiments. Some stud-

ies have tackled the problem of combining texture and color

[51] concluding that weights applied to color and texture when

estimating similarities are highly dependent on the observer and

the context.

Retrieval experiments have been performed on our dataset in-

troduced above (figure 5) and three sets of Texture images from

the Corel stock photography collection3. Textures (137000),

Textures II (404000) and Various Textures I (593000). In the

experiment we refer to them as Corel, Corel2 and Corel1 re-

spectively. Each Corel group has 100 textures (768 x 512 pix-

els), every texture is divided into 6 subimages and the total

number of textures is 6x100 = 600 for each Corel dataset. In

figure 6 we show some textures of the three Corel datasets.

We have used the almost standard Recall measure [52] to

evaluate the performance of the retrieval and the precision-

recall curves. These measures have been computed by using

all the images of each dataset as query images and afterwards

we have computed the average of all queries. In the ideal case

of the retrieval, the top 6 retrieved images would be from the

same original subsampled image.

Using similar weights in the combination of shape and color

descriptors to compute the distance (α, β in equation 5.1) we

have found that they do not have a big influence in the average

recall measure. This is probably due to the fact that color and

texture information is integrated earlier, at the blob level, before

building the descriptor TCD. This fact is illustrated in Fig.7 for

our dataset (a) and for Corel dataset in (b). Best results in all

datasets are obtained when both color and shape are combined,

otherwise average rate decreases substantially.

To compare efficiency, in table 1 we show retrieval rates for

the 4 datasets using our TCD and two MPEG-7 descriptors [53].

We have combined two MPEG-7 descriptors, HTD (Homoge-

neous Texture Descriptor) and SCD (Scalable Color Descrip-

3Corel data are distributed through http://www.emsps.com/photocd/corelcds.htm
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(a) Corel

(b) Corel1

(c) Corel2

Figure 6: Corel datasets.
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Figure 7: Retrieval performance of TCD with different weights. (a) Our dataset. (b) Corel dataset.
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.

Descriptor our dataset Corel Corel1 Corel2

TCD 97.33 73.25 86.25 79.11

MPEG-7 (SCD & HTD) 97.85 67.33 85.94 76.11

Table 1: Average Retrieval Rate

tor) as they are combined in Dorairaj and Namuduri [15]. The

Average Retrieval rate computed shows how our TCD over-

come MPEG-7 descriptors for the three Corel datasets and a

similar performance is achieved for our dataset. We also show

precision-recall curves using the same datasets in Fig.8, where

we show the full evaluation that confirms the previous results

over the precision range.

5.2. Experiment 2

In this experiment we evaluate the dense representation in

a retrieval application that is based on a weak segmentation.

This allows us to evaluate its efficiency with images containing

different textural patterns.

Assuming that a texture is formed by several textural com-

ponents spatially grouped on the same region, we perform the

image segmentation by clustering the feature vectors of the rep-

resentation build in section 3.1. We have used a SOM (Self

Organizing Map) neural network [54] to perform the cluster-

ing, although we could have used any other simple clustering

technique. This process generates N regions associated to each

one of the textural patterns of the image, where N is defined by

the user. Considering an image as a mosaic of different texture

regions [18], we have built a dataset formed by 1500 mosaic

images, were each mosaic is composed by selecting 9 random

images from our dataset with the restriction that no mosaic have

a repeated texture.

Before performing the image retrieval, all the mosaics of the

image dataset are segmented and decomposed into several re-

Figure 9: Retrieval performance using a BR-based segmentation.

gions using the proposed dense representation. Then in each

region we compute its descriptor (TCD) inside the biggest in-

scribed rectangle of the region. For a given image query we

compute its distance to each one of the image regions, of all

dataset’s images.

The image queries used in the retrieval are the same as those

used in the first experiment. The effectiveness of the retrieval is

again evaluated computing the Retrieval rate. In the ideal case

all the top N retrievals belong to the same original large image.

However, since the texture images that compose the mosaics

has been randomly chosen, there is not a unique value of N.

Concretely we have between 137 and 194 images of the same

texture through the several mosaics. This implies that in Fig.

9 is not possible to mark the point where we expect to achieve

the maximum possible efficiency (the top N retrievals), so we

marked with red lines these 137 and 194 values. In this figure

we can see that the retrieval efficiency is between 57% and 62%.

In this way, we can quantify the reduction of efficiency that is

due to the segmentation process.
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Although the reduction is important, an efficiency ≈60% is

still an acceptable rate for a representation that locates textures

in images. This is an important issue if we want to evaluate

the applicability of the proposed descriptor. A descriptor with

semantic properties but without the ability of locating textures

in images could not be completely justified.

In Figures 10 and 11 we show two examples of image queries

and their corresponding retrieval results. For every image we

give its ranking in the retrieval. In both cases we show the first

5 retrieval results and the subregion (white rectangle) where it

was detected, in the 2nd row we show the first five failed results.

A qualitative analysis of the results make us to highlight two

points, first the boundaries of segmentation need to be improved

mainly when the size of blobs increases. Second, in most of the

examples the errors arise from images that are quite similar to

the query, following the properties of the metric described in

previous experiment.

To conclude this section we have added a similar retrieval

experiment but with natural images instead of squared mosaics.

We have built a small dataset of 21 images (see Fig.12). We

show the results from three different queries extracted from the

same images. Top five retrieved images and the regions where

they were found are shown in figure 13. Although some fur-

ther research needs to be done to improve segmentation, we

again conclude the applicability of the proposed descriptor and

its dense versions for general natural images.

5.3. Experiment 3

From a qualitative point of view we analyzed how the ap-

pearance of textures is represented by the proposed descriptor

using Multidimensional Scaling (MDS) [55] in order to reduce

the dimension of the representation. In figure 14 we show a

global plot of the MDS computed on the distance matrix ob-

tained in Experiment 1, the stress measure obtained for our

dataset is 0.165 (the ideal value is 0 which indicates a per-

fect low dimension representation). In this figure we can see

the combination of the two cylindrical spaces, color and shape-

orientation. In the center we see an important overlapping of

images, whereas in the external area we can see several exam-

ples of dominant properties. It seems that in the area around

the circumference we have set there are images with dominant

saturated colors and dominant directions of anisotropic blobs.

Furthermore, along circular axis of dominant properties we can

see how the hues (blue, pink-purple, brown-red) are grouped.

In figure 15 we show a zoom of the central part of this plot

where we can see three different types of images: textures with

a dominant color but with low saturation (greyish patterns), tex-

tures with isotropic blobs, and textures with properties of the

extreme axis but appearing together on the same image, that is

two or more saturated colors of different hues (e.g. brown and

blue), or extreme orientations on the same pattern (e.g. 90 − 0).

As an example of browsing, instead of using sub-images as a

query, in figure 16 we show two examples of queries formulated

in terms of our vocabulary. In both figures we show the 2D plot

of MDS computed on the distance matrix of the descriptors of

top 40 images retrieved from a textual query. At the top of

this figure we show the result from the query: ”Blue vertical

oriented large blobs”, showing with a frame Q the position of

the query descriptor. In this case two essential axis emerge, one

for the orientation and another for the color saturation, as it is

provided by the query. The figure at the bottom is the result of

the more complex query Blue horizontal oriented small blobs

AND Brown horizontal oriented small blobs, which is based on

two different texture components. The configuration obtained

on a 2D plot of MDS clearly shows an axis where the two colors

of the query appear on the extremes. In the center and next

to the query position we can see the images where both colors

appear together. In this 2D plot there is not a clear interpretation

for shape.

At this point we have to conclude that this is a preliminary

and qualitative analysis to illustrate the behavior of the metric

for the proposed descriptor, which seems to be coherent with

the texture appearance explained with basic linguistic terms.

6. Conclusions

This paper proposes a computational approach implementing

a perceptual theory that combines color and texture in a early

fusion way using a low-dimensional space that copes with blob

attributes. It provides a comprehensive framework since it al-

lows to define sparse, dense and linguistic descriptions of color

texture images.

The work implements the original definition of the Julesz’s

perceptual theory Julesz and Bergen [35], where textons are es-

sentially defined by the attributes of image blobs. The attributes

we propose are: area, aspect-ratio and orientation (for shape),

and color, that defines a low dimensional color-texture space.

We propose a color-texture descriptor: the Texture Com-

ponent Descriptor (TCD), that arise from the decomposition

of the image in its textural components, which are groups of

blobs with similar attributes either color, shape or orientation.

This is based on a clustering on the perceptual spaces of the

blob attributes. Clusters of blobs are coping with the inherent

repetitive property of the image texture. We compare our pro-

posed descriptor with a combination of two MPEG-7 descrip-

tors (HTD and SCD) in a retrieval experiment. Our descriptor

overcomes MPEG-7 in three Corel datasets of natural textures.

Moreover, we present two additional experiments that ex-

plore the comprehensive qualities of the proposed framework.

First, we show that the descriptor can be extended to a dense

representation inspired on a winner-take-all mechanism com-

puted with morphological operations. This color-texture rep-

resentation shows a reasonable performance in locating texture

patterns included in complex images. Second, we give a pro-

cedure to translate the descriptor to a preliminary vocabulary

based on basic English terms. The experiment gives a qualita-

tive evaluation of the proposed vocabulary using Multidimen-

sional Scaling to explore the perceptual properties of the de-

scriptor on the whole image dataset. Additionally, we plot some

examples of the retrieved images from term-based queries that

show the feasibility of the descriptor in browsing applications.

Further work is needed to evaluate the performance of our

proposal in larger datasets. Introducing structural properties of
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Green non-oriented medium blobs

Dark blue non-oriented medium blobs

Yellowish-orange non-oriented medium blobs

Dark blue non-oriented small blobs

Dark blue right oriented small blobs

Green non-oriented small blobs

#1 #2 #3 #4 #5

#27 #41 #45 #52 #60

Figure 10: Query image and its textual description (on the top). 1st row: top 5 retrieved images. 2nd row: top 5 errors in retrieval.

Grey non-oriented small blobs

Grey horizontal oriented small blobs

Grey vertical oriented small blobs

#1 #2 #3 #4 #5

#14 #46 #54 #56 #57

Figure 11: Query image and its textual description (on the top). 1st row: top 5 retrieved images. 2nd row: top 5 errors in retrieval.

Figure 12: Natural images Dataset.

12



Figure 13: Top 5 retrieved images of the query on the left column.

Figure 14: 2D MDS configuration of the our image dataset.
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Figure 15: Central zoom of the 2D MDS results.

the texture patterns that emerge from the blob organization (e.g.

regularity), using the localization of the blobs that is already

computed with texture components, could clearly improve the

descriptor for browsing.
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