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Abstract

Put succinctly, the bag-of-words based image representation is the most successful
approach for object and scene recognition. Within the bag-of-words framework the
optimal fusion of multiple cues, such as shape, texture and color, still remains an
active research domain. There exist two main approaches to combine color and shape
information within the bag-of-words framework. The first approach called, early
fusion, fuses color and shape at the feature level as a result of which a joint color-
shape vocabulary is produced. The second approach, called late fusion, concatenates
histogram representation of both color and shape, obtained independently.

In the first part of this thesis, we analyze the theoretical implications of both
early and late feature fusion. We demonstrate that both these approaches are sub-
optimal for a subset of object categories. Consequently, we propose a novel method
for recognizing object categories when using multiple cues by separately processing
the shape and color cues and combining them by modulating the shape features
by category specific color attention. Color is used to compute bottom-up and top-
down attention maps. Subsequently, the color attention maps are used to modulate
the weights of the shape features. Shape features are given more weight in regions
with higher attention and vice versa. The approach is tested on several benchmark
object recognition data sets and the results clearly demonstrate the effectiveness of
our proposed method.

In the second part of the thesis, we investigate the problem of obtaining compact
spatial pyramid representations for object and scene recognition. Spatial pyramids
have been successfully applied to incorporate spatial information into bag-of-words
based image representation. However, a major drawback of spatial pyramids is that
it leads to high dimensional image representations. We present a novel framework
for obtaining compact pyramid representation. The approach reduces the size of
a high dimensional pyramid representation upto an order of magnitude without
any significant reduction in accuracy. Moreover, we also investigate the optimal
combination of multiple features such as color and shape within the context of our
compact pyramid representation.

Finally, we describe a novel technique to build discriminative visual words from
multiple cues learned independently from training images. To this end, we use
an information theoretic vocabulary compression technique to find discriminative
combinations of visual cues and the resulting visual vocabulary is compact, has the
cue binding property, and supports individual weighting of cues in the final image
representation. The approach is tested on standard object recognition data sets.
The results obtained clearly demonstrate the effectiveness of our approach.
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Chapter 1

Introduction

Images play an integral part in our daily communication. The advent of new tech-
nologies together with widespread access to internet services have provided a dom-
inant platform for photo sharing. Online photo sharing websites such as Flickr are
awash in digital photos. This huge amount of pictures digitally available on the
internet are difficult to manage manually. An automatic system for managing the
photos would significantly reduce the labor. Automatic image concept classification
is however a challenging task. To automatically retrieve an image, search engines
typically make use of the text associated with it. This reliance on the metadata
and associated text, while ignoring the semantics of an image, hampers the retrieval
performance.

Contrary to modern search engines, humans have an outstanding ability of clas-
sifying images based on their visual content. When asked about the content of an
image, a person can tell whether there is a car, a building or a zebra, etc., in a
fraction of a second [60, 68]. Visual content based image classification is a long
awaited goal of the computer vision community. Fig. 1.1 shows images of different
object categories. Is there a train or a bottle in the top left image in Fig. 1.1? The
problem of image classification deals with such queries. However, automatic image
classification is a challenging task due to large variations between images belonging
to the same category. Several factors such as significant fluctuations in viewpoint
and scale, illumination, partial occlusions and multiple instances also have a sig-
nificant influence on the final results and thus make the problem of description of
images even more complicated [7, 14,21].

Although color is an important visual cue in human perception, and also plays a
paramount role in the visual search mechanism [24,41,51,100], still many computer
vision approaches to object recognition focus on shape features and ignore color [14,
21,46]. To improve visual search, color should be incorporated to extract extra visual
information in cases where shape is not the most discriminative cue. Subsequently,
an object recognition system based on the combination of color and shape cues can
be expected to improve recognition performance.

1



2 INTRODUCTION

Figure 1.1: Example images of different object categories from the PASCAL
VOC data set. Image classification is concerned with assigning one or multiple
category labels to each image without localizing the object. In this thesis, we aim
at improving the bag-of-words framework by combining color and shape cues for
object recognition.

1.1 Bag-of-Words based Object Recognition

In recent years the bag-of-words based framework has been demonstrated to be one
of the most successful approaches to object and scene recognition [7, 46, 72]. The
first stage in the pipeline, feature detection, involves detecting keypoint regions in an
image either by employing dense sampling or through interest point detection. The
feature detection step is followed by representing the selected keypoint regions using
local descriptors in the feature description stage. Afterwards, a visual vocabulary is
constructed by quantizing the local descriptors into a fixed-size visual vocabulary.
Finally, in the assignment stage, the image is represented by a histogram over the
visual code-book. These histogram representations are then used to train a classifier
to recognize different object categories. This relatively simple image representation
was found to obtain superior results on image classification tasks even for difficult
cases such as those shown in Fig. 1.1.

The success of the bag-of-words approach is dependent on various factors such
as the quality of visual vocabularies, the combination of multiple features, efficient
sampling strategies, the classification techniques, etc. In this thesis, we focus on
three problems related to combining color and shape features within the bag-of-
words framework.
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Figure 1.2: Example images from the raspberry and foliage categories. Late
fusion is better suited to classify the raspberry images since shape is constant and
color changes significantly. To classify the foliage category, early fusion is expected
to provide better performance.

Combining color and shape features: Several features such as shape, texture
and color are used to describe the local patches. Shape is the most commonly used
feature within the bag-of-words framework due to its high discriminative power [53].
There are several stages within the bag-of-words framework where color can be in-
corporated. Firstly, color can be added into the feature detection stage by focusing
on the salient color regions in an image. Secondly, color can also be introduced
into the feature extraction stage by describing the local patches using color infor-
mation. Generally, the focus of incorporating color information in the bag-of-words
framework is at the feature extraction stage.

Recent approaches used to combine color and shape information often provide
below-expected results on a wide range of object categories [56]. The inferior results
obtained might be attributed to the way color is incorporated. Traditionally there
exist two approaches to combining color and shape features. The first approach,
termed early fusion, combines color and shape features locally before the vocabu-
lary construction stage. As a result of this a joint color-shape visual vocabulary
is constructed. The second approach, called late fusion, combines the two visual
cues after the vocabulary construction stage. In late fusion, separate visual vocab-
ularies are constructed for color and shape and the two representations are then
concatenated to construct the image representation.

To accommodate multiple cues within the bag-of-words framework, two proper-
ties are especially desirable for the final image representation: feature binding and
feature compactness. Feature binding involves combining color and shape informa-
tion at the local level and not at the image level. This property is essential for distin-
guishing images with red squares and green circles from images with green squares
and red circles. Feature compactness involves having a separate visual vocabulary
for each of the different features. The feature compactness property prevents the
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different cues from becoming diluted, which happens in the case of early fusion
where a combined shape-color vocabulary is constructed. Existing approaches used
to combine color and shape information have not succeeded so far in combining both
these properties in a single image representation.

Early fusion binds the color and shape features locally at the feature level. The
binding of color and shape cues is also performed by the humans to select and
combine the individual features in an accurate manner for classifying object cate-
gories [82]. This binding ability is especially desireable to correctly classify object
categories that exhibit constancy over both color and shape features. Contrary to
early fusion, late fusion does not possess the feature binding property. However, late
fusion provides compact image representations since separate visual vocabularies are
constructed for both color and shape cues. This compact feature representation is
very useful for object categories where one of the two visual cues varies significantly.
Fig 1.2 shows a two class problem of classifying raspberries and foliage. The foliage
category will be better represented by early fusion as both color and shape are con-
stant whereas late fusion will provide better recognition performance for raspberries
category since shape is constant while color changes a lot.

Fig 1.2 also shows that both early and late fusion based approaches are sub-
optimal for a number of object categories. Since both approaches are suited for
different sets of object categories, this is especially problematic for complex and
challenging object recognition data sets that contains a variety of object categories
possessing varying degrees of importance of color and shape cues. Therefore, finding
an approach combining the strengths of the two fusion approaches for such challeng-
ing and complex data sets is expected to further improve recognition performance.

Spatial information within bag-of-words: Image representations obtained us-
ing the standard bag-of-words approach lacks spatial information. The spatial pyra-
mid matching approach [47] provides a simple way of introducing spatial information
within the bag-of-words framework. The technique works by dividing an image into
increasingly finer sub-regions and constructing histograms for each region. This re-
sults in a multi-resolution histogram that captures the spatial layout of an object or
scene. Although spatial pyramid schemes yield excellent performance, the resulting
histogram has very high dimensionality. Fig 1.3 shows an image with a spatial pyra-
mid scheme. The final dimensionality of the pyramid histogram depends on the size
of visual vocabulary and increases by going deeper into the pyramid levels. This
is especially problematic when combining spatial pyramids of multiple cues such as
color and shape. Therefore, a compact pyramid representation is expected to allow
combining multiple visual cues such as color and shape efficiently.

There exist several approaches [22, 45, 101] to compress the size of visual vo-
cabularies. These approaches aim at reducing the size of the visual vocabulary at
the standard bag-of-words level. However, compressing the size of spatial pyramid
representations is still an open problem. A compact pyramid representation is ex-
pected to yield several advantages. Firstly, a compact pyramid representations will
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Figure 1.3: An example image with spatial pyramid scheme of [47]. An im-
age is divided into finer regions and a histogram is constructed for each region.
Consequently, histograms from all the regions are concatenated into a single rep-
resentation. The dimensionality of the final histogram is equal to the number of
regions times the size of the visual vocabulary.

decrease the classification time and memory consumption. Secondly, reducing the
histogram dimensionality will allow the incorporation of more features resulting in
better recognition.

Multi-cue visual vocabularies: Conventionally, local color and shape features
are concatenated within the bag-of-words framework to construct a single joint color-
shape vocabulary. To obtain good performance, relative weighting of the two visual
cues is performed since different object categories within a data set possess varied
importance of color and shape features. The weights are learned through cross-
validation on a validation set. Although early fusion based visual vocabularies do
possess the feature binding property discussed above, this comes at an expensive
cost of constructing visual vocabularies iteratively for a given set of weights.

The problem of constructing efficient visual vocabularies have been investigated
in the past [36,77,84,101]. There exist several approaches [22,69] to introduce top-
down information using the category labels to improve visual vocabularies. However,
none of these approaches handle the problem of multi-cue visual vocabularies for a
large number of object categories. Moreover, the approach of [69] scales with the
number of object categories in the data set. This is especially cumbersome for
data sets such as caltech-101, flower-102 and bird-200 etc. where there exists more
than 100 object categories. In summary, a new approach to construct multi-cue
vocabularies which does not scale with the number of object categories while allowing
efficient weighting of the visual cues is highly desired for large object recognition
data sets.

A simple way of ensuring feature binding is to construct a color-shape visual
vocabulary that contains one visual word for each combination of original shape
and color features. This may lead to a visual vocabulary of millions of visual words
originating from a few initial color and shape visual words. Constructing such visual
vocabularies is infeasible due to the difficulty of sampling from limited training data.
Furthermore, with several parameters to tune the resulting classifier is subjected
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to overfitting. These limitations prohibited further investigation in this direction.
Recently, a number of visual vocabulary compression techniques have been proposed
that derive compact and discriminative vocabularies from very large ones. The most
successful methods are based on information theoretic clustering algorithms that
are based on robust estimation of category-conditional visual word probabilities.
The success of vocabulary compression techniques [13,22,78] allow us to reconsider
the direct, Cartesian product approach to building multi-cue visual vocabularies
which have the feature binding property while making it easy to weight the relative
contribution of color and shape cues

1.2 Objectives and Approach

Above we discussed three aspects of combining color and shape cues within the bag-
of-words framework. This analysis has led us to the following three objectives of the
thesis research.

• Combining feature binding and compactness: The analysis of early and
late feature fusion suggests that both approaches possess different properties,
each suitable for only a subset of object categories. The two desired proper-
ties: feature binding and feature compactness, found in early and late fusion
respectively, should be combined in a single image representation. Therefore a
new image representation is required to counter the shortcomings of both early
and late fusion. This prompts us to propose a new approach that exploits the
advantages of both early and late fusion.

As mentioned above, the advantages of both early and late fusion should be
combined in a single image representation. This motivates us to look into the human
visual attention literature for an alternative approach of combining color and shape
cues. Differently than most computer vision approaches [7, 10, 86, 87], the human
visual system processes the basic visual features such as color and shape separately in
a parallel way [81]. To obtain the binding of these visual features into a recognizable
object, visual attention plays a pivotal role [81,103,104]. This attention mechanism is
employed by the visual system to reduce the computational cost of visual search. The
two distinct ways by which information can be used to direct attention are, bottom-
up attention (memory-free), where the attention is directed rapidly to the salient
and potentially important regions and, top-down attention (memory-dependent),
which enables goal directed task demanded visual search [102].

The above analysis shows that, differently than state-of-the-art computer vision
methods, the human visual system processes basic visual features such as color and
shape separately. Subsequently, they are combined in the presence of visual atten-
tion. These observations inspire us to propose a new approach to solve the problem
raised mentioned above. The proposed approach presented in chapter 3, modulating
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shape features by color attention, processes color and shape cues separately. The
two visual cues are then combined using bottom-up and top-down mechanisms of
attention. The top-down information is introduced by using learned, class-specific
color information. This color information is then used to construct category-specific
color attention maps of the object categories. Subsequently, top-down color at-
tention maps are used to modulate the weights of the bottom-up shape features.
Finally, a class-specific color attention histogram is constructed for each category.

• Discriminative compact spatial pyramid representations: The conven-
tional spatial pyramid scheme has been demonstrated to significantly improve
the performance over standard bag-of-words approach. However, this perfor-
mance gain is obtained at a high computational and memory cost due to the
high dimensionality of spatial pyramids. Therefore, a compact pyramid repre-
sentation should reduce the computational cost without deteriorating classifi-
cation performance. Moreover, such a compact pyramid representation is also
expected to allow the combination of multiple visual cues such as color and
shape efficiently.

In chapter 4, the problem of constructing compact and discriminative spatial
pyramids for object and scene recognition is investigated. Including spatial infor-
mation using spatial pyramids has been shown to significantly improve recognition
results over standard bag-of-words approach [47]. The spatial pyramid scheme works
by dividing an image into increasingly finer regions. A histogram is then constructed
for each region. Although spatial pyramids improve the results, the resulting his-
tograms are of high dimensionality increasing the classification time and memory
usage significantly. This problem is more apparent for difficult data sets such as
the PASCAL VOC where the higher performance is achieved by using very large
visual vocabulary. Furthermore, the dimensionality problem also prevents combing
multiple visual cues due to high computational cost.

To make use of spatial pyramid more efficiently, a lower dimensional representa-
tion is highly desirable without significant loss of accuracy. Another advantage of
compact spatial pyramid representation is that it allows the combination of visual
cues without increasing the classification time. Therefore, an approach is proposed
that preserves the overall accuracy while reducing the dimensionality of the pyramid
histogram significantly and counters the problem posed above. A divisive informa-
tion theoretic feature clustering algorithm [13] is used to construct compact pyramid
representation. Moreover, an evaluation of combining color and shape cues at the
spatial pyramid level is performed. The experiments clearly demonstrate the effec-
tiveness of the proposed approach at a significantly lower computational cost.

• Compact and discriminative multi-cue visual vocabularies: Early fu-
sion based visual vocabularies possess the feature binding property. These
visual vocabularies are typically constructed by leveraging the contribution of
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color and shape. Without weighting the color and shape cues, the vocabular-
ies provide inferior classification results. Typically, the weighting parameter
is learned through cross-validation. This is an extremely time consuming pro-
cedure. On the other hand, the late fusion approach allows efficient weighting
of color and shape cues but lacks feature binding. Therefore, we aim at con-
structing compact multi-cue visual vocabularies that possess the feature bind-
ing property while allowing the weighting of different visual cues efficiently.

As mentioned earlier, early fusion has the property of feature binding. Late
fusion lacks feature binding but allows efficient weighting of the visual cues to bal-
ance the contribution of shape and color features. Cue weighting in early fusion
is problematic, implying that visual vocabularies and histogram construction must
be performed for each weighting factor, thus making the cross-validation procedure
extremely expensive.

A direct way to construct a multi-cue visual vocabulary is by having a visual
word for each combination of original color and shape cues. Although such multi-cue
vocabulary ensures feature binding nevertheless this can result in a vocabulary of
millions of visual words. Moreover, limited amounts of training samples together
with tuning of multiple parameters further make it infeasible to construct such
vocabularies. Recent advances in information-theoretic clustering techniques [13,22,
78] permit us to revisit the problem of constructing multi-cue visual vocabularies.
The information-theoretic clustering algorithms are based on robust estimation of
class-conditional visual word probabilities.

To this end, an approach is presented in chapter 5 that constructs a multi-
cue visual vocabulary. We show that for the task of image classification, modeling
joint-cue distributions independently is more statistically robust than empirically
estimating the dependent, joint-cue distribution directly. A divisive information
theoretic feature clustering algorithm [13] is employed to construct a multi-cue visual
vocabulary by compressing the cartesian product of primitive features. The resulting
visual words are compact, have the feature binding property, and supports individual
weighting of visual cues in the final image representation. Experiments demonstrate
the effectiveness of the proposed approach.



Chapter 2

Bag-of-Words Based Object
Recognition

Object recognition is the problem of determining whether an image contains an ob-
ject instance or not. Typically a predefined list of object categories is provided and
the task is to correctly assign a category label to an image. Visual categorization is
a difficult task, interesting in its own right, due to large variations between images
belonging to the same class. Several other constraints such as view point changes,
variations in illumination, object residing in wide range of context also makes ob-
ject recognition an extremely difficult task to accomplish. There exist a variety of
object categories ranging from man-made object categories such as car, bus, boat,
aeroplane, piano etc. to natural object categories such as plants, sheep, dolphins
etc. Such diversity further increases the complexity of the problem.

Many approaches have been used in the past to tackle the problem of object
recognition. The bag-of-words approach which represents an image as a histogram
of local features is currently the most successful approach for object and scene
recognition [7, 21, 46, 47]. The approach works by constructing a visual vocabulary
of local features after which a histogram is built by counting the occurrences of each
visual word in an image. The histogram is then used as an input to a classifier. A
model is trained using a set of training images by projecting the histogram values into
a space aiming to optimize the gap between examples of different object categories.
Consequently, given a test image the model is used to predict the category label of
the image.

In this chapter, we provide a detailed overview of each stage of the bag-of-words
pipeline. The bag-of-words framework consists of two main parts namely, image
representation and the machine learning. To obtain an image representation, the
subsequent stages to follow are feature detection, feature extraction, vocabulary
construction and assignment. We provide an overview of each of these stages within
the bag-of-words framework. Furthermore, we also provide an overview of existing
approaches used to combine multiple cues within this framework. Finally, we present

9
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an overview of our PASCAL VOC 2009 challenge image classification submission
which is based on bag-of-words framework. The main novelty in our submission is
the introduction of a new approach to combine color and shape cues presented in
this thesis.

2.1 Feature Detection

The first stage within the bag-of-words approach involves detecting keypoints or
regions in an image. There exist multiple strategies for selecting regions in an image.
These strategies can be divided into two broad categories namely: dense sampling
and interest point sampling strategies. The dense sampling technique works by
scanning the image with either single or multiple scales at fixed locations forming a
grid of rectangular windows. Dense sampling scheme is often advantageous for scene
classification since all regions in the image provide information for the recognition
task.

The second class of sampling strategy employed to find regions is called interest
point sampling. Interest point techniques rely on finding salient points (such as
corners, blobs etc.) in an image. Interest point strategies are often helpful for object
recognition task as they ignore the homogeneous areas and focus on the object and
its surroundings in an image. Several interest point strategies have been proposed in
the literature [58,64,90]. The Harris-Laplace point detector [58] focuses on locating
corners that are scale invariant in an image. The Laplacian operater is used to find
the scale of the corner. Other then finding corners in an image, there also exists blob
like structures in an image. Laplacian-of-gaussian is a commonly used blob detector
where an image is convolved using a gaussian kernel at certain scales to obtain a
scale space representation. Most of the existing interest point schemes make use of
shape saliency as a selection criteria for detection.

Among the color based interest point detectors proposed in the literature, color
saliency boosting [90] is the most commonly used approach. The method exploits
the saliency of color edges which is computed by applying information theory to
the statistics of color image derivatives. The color boosting approach has been
successfully applied for object recognition and retrieval tasks [80,86]. Fig 2.1 shows
example of different point sampling strategies. The dense sampling is covering the
whole image whereas the interest point sampling strategies target salient regions of
an image.

2.2 Feature Extraction

The next stage within the bag-of-words framework involves describing the extracted
regions of an image. All the patches extracted in an image are normalized to a
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Figure 2.1: Sampling strategies used for selecting regions in an image. The second
image from the left showing a dense grid representation followed by two interest
point sampling techniques (blob and color-boosted blob detection). Note that the
color-boosted detector puts more emphasis on the red beak of the bird.

standard size and descriptors are computed for all regions. Many features such as
color, texture, shape have been used to describe visual information for object recog-
nition. In the next paragraphs, we provide an overview of the two most commonly
used visual cues namely, shape and color. We will put more emphasis on the color
descriptors which play an important role in this thesis.

2.2.1 Shape Feature Extraction

Most of the current approaches within the bag-of-words framework rely on extract-
ing shape features predominantly SIFT [53] to represent an image [7,14,59,87]. The
SIFT descriptor works on grey level images ignoring the color contents of an im-
age. SIFT operates by computing gradients within a region of interest. The local
appearance of the region is described by edge histograms. The region of interest is
first divided into 4x4 grid of cells where each of the four quadrants have its own
edge directional histogram computed from the local gradient direction weighed by
the magnitude of the gradient. The SIFT descriptor is highly invariant to changes
in scale,illumination, and orientation. It is also partially invariant to 3D viewpoint.
Each SIFT keypoint has 132 dimensions where 128 are spatial orientation bins,plus
the coordinates, rotation and the scale of the keypoint. Fig 2.2 shows computation
of a SIFT descriptor based on the gradient and orientation of each image sample
point in a region around the feature. The SIFT descriptor was found to outperform
other descriptors in an evaluation performed by [59].

2.2.2 Color Feature Extraction

Color descriptors represent the color aspects of an image. The measured color values
vary significantly due to large amount of illumination variations. Here we describe
three popular color descriptors namely HUE, Color names and ColorSIFT, used
extensively in this thesis.

HUE descriptor: The HUE descriptor [87] is based on the hue channel of the
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Figure 2.2: An example of SIFT computation. A region in an image is divided
into four quadrants where each of the four quadrants contains 16 samples of the
image gradient. The direction of the gradient together with magnitude samples
are combined into a histogram of 8-bins gradient. Consequently, each of the four
quadrants has its own histogram. The figure is taken from [53].

HSV color space. To obtain efficient local color histograms, [87] argues that the
color descriptor should be robust to photometric changes such as shadows, shadings
and variations in the light sources. Moreover, the descriptor should also be robust to
geometric variations and handle photometric stabilities. These events are modeled
by the well known Dichromatic Reflection Model [75].

f = mbCb +msCs (2.1)

We use boldface to indicate vectors, for example, f = (R,G,B) and Cb = (Cb
R, C

b
G, C

b
B).

The reflection of light comprises of two components namely, body reflection part (
Cb) and specular reflectance part ( Cs ). Both terms are multiplied by a geometrical
term, mb and ms, depending on the scene geometry (viewing and illumination di-
rection, and objects orientation). The body reflectance describes the light reflected
after interacting the surface albedo whereas the interface reflectance describes the
light portion that is immediately reflected to the surface thereby causing specu-
larities. The dichromatic reflection model can be used to derive the photometric
invariance of color features.

The opponent colors can be computed from RGB by:
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It can be shown that the opponent colors O1 and O2 are invariant with respect
to specularities in case of white illuminant [27]. For example filling Eq.2.1 into O1
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yields the following result.
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)
, (2.3)

where we use the fact that white light Cs = {1, 1, 1}. As can be seen O1 is inde-
pendent of specularities because ms drops out of the equation.

The hue equation is given by

hue = arctan

(
O1

O2

)
, (2.4)

where O1 and O2 are the two opponent channels derived from the RGB space. By
substituting the O1 and O2 using Eq. 2.1 in Eq. 2.4:
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which only depends on the body color Cb and is both invariant to mb and ms.
Therefore, the hue is invariant for shadow and shading variations and specularities.

The hue is unstable around the grey axis. To counter this problem, an error prop-
agation analysis has been applied by [28, 87] to the hue transformation. The error
propagation analysis shows that the certainty of the hue is inversely proportional
to the saturation. To counter the instability of hue around the grey axis, the hue
samples are weighted by its saturation.

Fig 2.3 shows the resemblance between the computation of the SIFT and the
HUE descriptor. The SIFT descriptor is based on the local gradients. The local
patch is represented as a histogram over the direction of the gradients. Each gradient
has a weight in the histogram which is equal to its length, which is the gradient
strength. Similarly, the HUE descriptor looks at the chromaticity of each RGB
value as is described by O1 and O2. This can be understood as a mapping of an
RGB value to a vector. Next, a histogram of the direction of these vector is made.
Again each vector has a weight in the histogram which is equal to its length, which
in this case is the saturation of the RGB value. Other than SIFT only a single
histogram is made to represent the patch.

In conclusion, the HUE descriptor provides a compact color description which
is invariant to specularities (under white light assumption), and shadow-shading
events.

Color names descriptor: Color names involve the assignment of linguistic color
labels to image pixels. The 11 basic color terms of the English language are black,
blue, brown, grey, green, orange, pink, purple, red, white and yellow [4]. Color
names display a certain amount of photometric invariance because several shades of
a color are mapped to the same color name. It also provides an added advantage
of allowing the description of the achromatic colors such as black, grey, white etc.
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Figure 2.3: An example of Hue description. The top row shows the computation
of SIFT descriptor and the bottom row shows the working of HUE descriptor. Note
the similarity between the computation of SIFT and HUE.

which are impossible to distinguish from the photometric invariance perspective.
The color name descriptor [88] CN is defined as a vector containing the probability
of a color name given an image region R.

CN = {p (cn1|R) , p (cn2|R) , ...., p (cn11|R)} (2.6)

with

p (cni|R) =
1

P

∑
x∈R

p (cni|f (x)) (2.7)

where cni is the i-th color name, x are the spatial coordinates of the P pixels in
region R, f = {L∗, a∗, b∗}, and p (cni|f) is the probability of a color name given a
pixel value. The probabilities p (cni|f) are computed from a set of images collected
from Google. To learn color names, 100 images per color name are used. To counter
the problem of noisy retrieved images, PLSA approach is used by [89]. Fig 2.4 shows
an example image along with the color names description of the pixels.

In conclusion, color names possess some degree of photometric invariance. How-
ever, they also allow to encode the achromatic colors such as black, grey and white,
leading to higher discriminative power.

ColorSIFT descriptor: The two above descriptors are pure color based. The fea-
tures discussed here are combined color and shape descriptors. Recently, a perfor-
mance evaluation of color descriptors has been performed by Van de Sande et al. [86].
The work aims at combining color information with SIFT descriptor. Among several
ColorSIFT descriptors evaluated in their study, opponentSIFT is shown to provide
superior performance for object recognition task.

The opponentSIFT is based on the opponent color space as shown in Eq. 2.2. The
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Figure 2.4: An example of color name description. For each pixel the best repre-
sentative color name is assigned.

O3 channel describes the intensity information whereas the color information is
represented in O1 and O2. In OpponentSIFT, SIFT is computed on the three
opponent channels respectively. The resulting feature vectors are concatenated into
a single representation. It is further shown in [86] that C-SIFT performs best on the
PASCAL VOC 2007 data set. The C-SIFT descriptor is derived from the opponent
color space as O1

O3
and O2

O3
. Both C-SIFT and opponentSIFT descriptors are invariant

to light intensity changes. Fig 2.5 shows an example image along with the three
opponent channels.

2.2.3 Visual Vocabulary and Histogram Construction

Feature extraction is followed by visual vocabulary construction stage within the
bag-of-words framework. Typically, a visual vocabulary is constructed using K-
means algorithm. The algorithm is a simple iterative approach where the number
of clusters are predefined. Initially the cluster centers are initialized by randomly
selecting descriptor points. The distance is calculated for each sample point to the
cluster centers and the point is assigned to the cluster having the closest center.
After assigning all the points, the cluster centers are updated by averaging all the
points in a cluster. The procedure is repeated for a fixed amount of iterations.

The quality of visual vocabulary depends on the size of the vocabulary. Generally
improved results are obtained using larger visual vocabularies. Although larger
visual vocabularies improve the performance, yet this improvement comes at the
cost of high classification time. One popular strategy is to use information-theoretic
clustering techniques [13,22] to compress the visual vocabularies while maintaining
the discriminative power of the original visual vocabulary. The compression of
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Figure 2.5: An example image with Opponent channel representations. In case
of OpponentSIFT, SIFT is computed on each opponent channel respectively.

larger visual vocabularies also allow to incorporate more features to improve the
classification performance as we will further investigate in this thesis.

After constructing a visual vocabulary, each descriptor is assigned to a single
visual-word in the codebook. Consequently, a histogram is constructed by counting
the number of occurrences of each visual-word in an image. Recently, it has been
shown that the performance of the conventional histogram approach can be improved
by using a soft-assignment through kernel vocabularies [33]. A kernel function is used
for smoothing the conventional histogram assignment of image features to visual
vocabulary.

2.2.4 Image Classification

The histogram constructed in the previous stage is then input to a machine learning
algorithm for classification. The feature vectors and class labels are provided and
supervised classification is performed. The goal is to learn a classifier that provides
an estimation about previously unseen feature vector of being an instance of a
particular class. Generally, classification is performed using support vector machines
technique. Support Vector Machines work by finding the hyperplane in the feature
space that can best separate the data points. The decision function of support vector
machines classifier for a test image with feature vector Ft is:

g (Ft) =
∑

F∈trainset

αFclFk (F,Ft)− β (2.8)

where clF is the category label of F, β is the threshold learned, αF is the weight
learned from the training example F and k (F,Ft) is the kernel function based on
some distance metric. A variety of kernels for support vector machines have been
proposed in literature [29,113].

Two distance measures are especially useful to compare histograms. The his-
togram intersection kernel is based on computing the distance between the two
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feature vectors as:

k (F,Ft) = min (F,Ft) (2.9)

where the minimum is taken for each bin in the histogram. Hence, a smaller value of
k indicates that the two feature vectors are different and vice versa. The χ2 kernel
is based on the χ2 distance computed between the two feature vectors as:

k (F,Ft) = e−
1
S
distχ2(F,Ft) (2.10)

where S is a scalar normalizing the distance and commonly learned through cross-
validation. Among several non-linear kernels, χ2 kernel is shown to provide excellent
performance for image classification task [86, 113]. In this thesis both intersection
and χ2 kernels are used.

2.3 Combining Color and Shape Features for Ob-

ject Recognition

Generally, the local description is performed by extracting low-level appearance or
texture features in an image. However, recently combining color and shape features
have shown to provide excellent results on benchmark object recognition data sets
[86]. There exists two main approaches to incorporate color information within the
bag-of-words framework [73,79]. The first approach, early fusion, combines color and
shape cues at the local feature level. This combination at the feature level results in
constructing a joint color-shape visual vocabulary. A weight vector β is introduced
to tune the relative weight of the color and shape in the combined vocabulary Vsc .

Vsc = (β Vc, (1− β)Vs) (2.11)

where Vc are the color features and Vs are the shape features. The weight vector β
is learned through cross-validation on the training data.

The second approach, late fusion, fuses color and shape information at the his-
togram level by concatenating the color and shape histograms obtained indepen-
dently. Here the different vocabularies are concatenated after quantization. A weight
vector α is introduced to obtain a combined histogram F(w|I) of color and shape
vocabularies for an image I.

F(ws&c|I) =

[
α F(wc|I)

(1− α) F(ws|I)

]
(2.12)

where w is the number of total vocabulary words, wc are color words and ws are
shape words. The weight vector α is learned through cross-validation on training
data.
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The two approaches, early and late fusion, have their own advantages and draw-
backs as well. Early fusion provides a more discriminative visual vocabulary since
the color and shape words are constructed by quantizing the local color and shape
cues combined at the feature level. This helps for recognizing object categories hav-
ing consistent color and shape features which is commonly the case in many natural
categories like plants and lions. On the other hand, late fusion provides a more
compact representation of both color and shape as separate visual vocabularies are
constructed for individual cues. This is especially important for man made cate-
gories such as cars and chairs vary considerably in color. To further elaborate the
differences of early and late fusion consider a two class problem of recognizing the
sun and balloon categories. Early fusion provides the best representation for the sun
category as both the shape (round) and color (yellow) are constant for the category.
Late fusion based image representation is problematic for this category because it
looses the connection between shape and color. However, such a representation pro-
vides better description for the balloon category because only shape is constant and
color varies significantly.

2.4 PASCAL VOC 2009 Image Classification Sub-

mission

To give an insight into state-of-the-art image classification system, we discuss here
the PASCAL VOC 2009 image classification competition. The abovementioned bag-
of-words approach has been employed in our PASCAL VOC 2009 image classification
competition submission. The PASCAL VOC Challenge 2009 data set consists of
13704 images of 20 different classes with 7054 training images and 6650 test images
as shown in Fig 1.1. The test set ground-truth is not available for this data set
and the results are submitted to the organizers directly. For this data set the
average precision is used as a performance metric in order to determine the accuracy
of recognition results. The average precision is proportional to the area under a
precision-recall curve. The average precisions of the individual classes are used to
get a mean average precision (MAP).

The whole pipeline used for our submission is shown in Fig 2.6. In the feature
detection step, we use Harris Laplace [58], Color Boosted HarisLaplace, Dense Multi-
scale Grid, Blob, and Color Boosted Blob detectors. For feature extraction stage,
SIFT [53] , Hue [87], Color names [88], Color-SIFT [86], GIST [65] have been used.
Spatial information is captured using spatial pyramid histograms [47] by dividing
the image into 2× 2 (image quarters) and 1× 3 (horizontal bars) subdivisions. We
compressed the visual vocabularies using the agglomerative information bottleneck
approach [22]. The main novelty in the pipeline is the introduction of color atten-
tion for combining color and shape information. Finally, the classification scores
are combined with object localization scores obtained through HOG pyramids [67]
and ESS detector using [30]. Our submission of combined classification and object
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Figure 2.6: An overview of our pipeline used for the VOC 2009 image classification
challenge. The main novelty in our whole pipeline is the introduction of color
attention proposed in chapter 3 of this thesis.

localization results obtained best results on pottedplant and tvmonitor category 1.

Fig 2.7 shows per category results obtained by the top 3 submissions. The
submission from NEC obtained best scores in 18 out of 20 categories. The NEC
submission aims at improving the coding scheme within the bag-of-words framework
and does not contain any color information. The submission from UVA is based the
ColorSIFT descriptors presented in [86] and is more proximal to our approach which
also aims at exploiting color information.

2.5 Conclusions

In this chapter, we have provided an overview of the bag-of-words approach for object
and scene recognition. The stages within bag-of-words framework namely, feature
detection, feature extraction, vocabulary construction and assignment have been

1For detailed results: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/results/
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Figure 2.7: Results per category on PASCAL VOC 2009 data set. Only top
3 submissions are shown here. Note that our approach obtains best results on
pottedplant and tvmonitor categories..

discussed. The discussion is followed by an overview of the existing approaches,
early and late feature fusion, used to combine color and shape cues. Finally, we
provide a brief overview of our submission to PASCAL VOC 2009 image classification
challenge. In the following chapters, we will investigate several aspects of introducing
color information into the bag-of-words framework.



Chapter 3

Modulating Shape Features by
Color Attention for Object
Recognition1

In this chapter we present a novel method for recognizing object categories when
using multiple cues by separately processing the shape and color cues and combining
them by modulating the shape features by category-specific color attention. Color
is used to compute bottom-up and top-down attention maps. Subsequently, these
color attention maps are used to modulate the weights of the shape features. In
regions with higher attention shape features are given more weight than in regions
with low attention.

We compare our approach with existing methods that combine color and shape
cues on five data sets containing varied importance of both cues, namely, Soccer
(color predominance), Flower (color and shape parity), PASCAL VOC 2007 and
2009 (shape predominance) and Caltech-101 (color co-interference). The experi-
ments clearly demonstrate that in all five data sets our proposed framework signifi-
cantly outperforms existing methods for combining color and shape information.

3.1 Introduction

Object category recognition is one of the fundamental problems in computer vision.
In recent years several effective techniques for recognizing object categories from real-

1Accepted for publication by the International Journal of Computer Vision [40]. Part of this
chapter appeared in ICCV 2009 [39].

21
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Shape Feature 
Extraction

Standard bag-of-words 
approach:

Input Image

Modulated class-specific 
histograms: Color Attention maps:

Class 1-Map
(butterfly)

Class 2-Map
(flower)

Figure 3.1: Top-down control of visual attention based on color. In standard bag-
of-words the image representation, here as distribution over visual shape words,
is constructed in a bottom-up fashion. In our approach we use top-down class-
specific color attention to modulate the impact of the shape-words in the image on
the histogram construction. Consequently, a separate histogram is constructed for
the all categories, where the visual words relevant to each category (in this case
flowers and butterflies) are accentuated.

world images have been proposed. The bag-of-features framework, where images
are represented by a histogram over visual words, is currently one of the most
successful approaches to object and scene recognition. Many features such as color,
texture, shape, and motion have been used to describe visual information for object
recognition. Within the bag-of-words framework the optimal fusion of multiple cues,
such as shape, texture and color, still remains an active research domain [10,26,86].
Therefore in this chapter, we analyze the problem of object recognition within the
bag-of-words framework using multiple cues, in particular, combining shape and
color information.

There exist two main approaches to incorporate color information within the
bag-of-words framework [73, 79]. The first approach called, early fusion, fuses color
and shape at the feature level as a result of which a joint color-shape vocabulary is
produced. The second approach, called late fusion, concatenates histogram repre-
sentation of both color and shape, obtained independently. Early fusion provides a
more discriminative visual vocabulary, but might deteriorate for classes which vary
significantly over one of the visual cues. For example, man-made categories such as
cars and chairs vary considerably in color. On the other hand, late fusion is expected
to perform better for such classes, since it provides a more compact representation of
both color and shape as separate visual vocabularies are constructed for individual
cues. This prevents the different cues from getting diluted, which happens in case
of a combined shape-color vocabulary. However, for classes which are characterized
by both cues the visual vocabulary of late fusion will not be optimal. Such classes
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include natural categories like cats and trees which are better represented by early
fusion based schemes.

Combining color and shape within the bag-of-words, using an early fusion based
approach, has recently shown to provide excellent results on standard object recog-
nition data sets [20, 86]. [1] propose to compute the SIFT descriptor in the HSV
color space and concatenate the results into one combined color-shape descriptor.
Photometrically invariant histograms are combined with SIFT for image classifica-
tion by [87]. A study into the photometric properties of many color descriptors and
an extensive performance evaluation is performed by [85, 86]. In summary, most
successful approaches [1, 86, 87] proposed to combine color and shape features are
based on early fusion scheme. As discussed before these early fusion methods are
all expected to be suboptimal for classes where one of the cues varies significantly,
like in the case of man-made objects.

This observation inspires us to propose a new image representation which com-
bines multiple features within the bag-of-words framework. Our approach, modu-
lating shape features by color attention, processes color and shape separately and
combines them by means of bottom-up and top-down modulation of attention 2 as
shown in Fig. 3.1. The top-down information is introduced by using learned class-
specific color information to construct category-specific color attention maps of the
categories. In Fig. 3.1 two color attention maps are visualized for the butterflies
and flowers categories. Subsequently, this top-down color attention maps are used
to modulate the weights of the bottom-up shape features. In regions with higher
attention shape features are given more weight than in regions with low attention.
As a result a class-specific image histogram is constructed for each category. We
shall analyze the theoretical implications of our method and compare it to early and
late fusion schemes used for combining color and shape features. Experiments will
be conducted on standard object recognition data sets to evaluate the performance
of our proposed method.

The chapter is organized as follows. In Section 3.2 we discuss related work. In
Section 3.3 the two existing approaches namely, early and late fusion, are discussed.
Our approach is outlined based on an analysis of the relative merits of early and
late fusion techniques in Section 3.4. Section 3.5 starts with an introduction to
our experimental setup followed by data sets used for our experiments and finally
experimental results are given. Section 3.6 finishes with concluding remarks.

3.2 Related Work

There has been a large amount of success in using the bag-of-visual-words framework
for object and scene classification [7, 14, 21, 46, 59, 72, 87] due to its simplicity and

2Throughout this chapter we consider information which is dependent on the category-label as
top-down, and information which is not as bottom-up.
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very good performance. The first stage in the method involves selecting keypoints
or regions followed by representation of these keypoints using local descriptors. The
descriptors are then vector quantized into a fixed-size vocabulary. Finally, the image
is represented by a histogram over the visual code-book. A classifier is then trained
to recognize the categories based on these histogram representations of the images.

Initially, many methods only used the shape features, predominantly SIFT [53]
to represent an image [14, 21, 46]. However, more recently the possibility of adding
color information has been investigated [7,10,86,87]. Previously, both early and late
fusion schemes have been evaluated for image classification [73]. The comparison
performed in recent studies suggest that combining multiple cues usually improves
final classification results. However, within the bag-of-words framework the optimal
fusion of different cues, such as shape, texture and color, still remains open to debate.

Several approaches have been proposed recently to combine multiple features at
the kernel level. Among these approaches, multiple kernel learning, MKL, is the
most well-known approach and significant amount of research has been done to ex-
ploit kernel combinations carrying different visual features [3, 6, 74, 91, 92]. Other
than MKL, averaging and multiplying are the two straight-forward and earliest ap-
proaches to combine different kernel responses in a deterministic way. Surprisingly,
in a recent study performed by [26] it has been shown that in some cases the product
of different kernel responses provide similar or even better results than MKL. It is
noteworthy to mention that our approach is essentially different from MKL because
it proposes a new image representation. Like early and late fusion it can further be
used as an input to an MKL.

Introducing top-down information into earlier stages of the bag-of-words ap-
proach has been pursued in various previous works as well, especially in the vocab-
ulary construction phase. [45] propose to learn discriminative visual vocabularies,
which are optimized to separate the class labels. [69] proposes to learn class-specific
vocabularies. The image is represented by one universal vocabulary and one adap-
tation of the universal vocabulary for each of the classes. Both methods showed to
improve bag-of-words representations, but they do not handle the issue of multiple
cues, and for this reason could be used in complement with the approach presented
here. [95] semantically label local features into a number of semantic concepts for
the task of scene classification. [110] propose an optimization method to unify the
visual vocabulary construction with classifier training phase. [22] propose a method
to generate compact visual vocabularies based on agglomerative information bottle-
neck principle. This method defines the discriminative power of a visual vocabulary
as the mutual information between a visual word and a category label.

There have been several approaches proposed in recent years to learn an effi-
cient visual codebook for image classification and retrieval tasks. [77] propose an
approach to object matching in videos by using inverted file system and document
ranking. [101] propose a method for image categorization by learning appearance-
based object models from training images. A large vocabulary is compressed into
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a compact visual vocabulary by learning a pairwise merging of visual-words. [36]
argue that visual vocabulary based on standard k-means algorithm on densely sam-
pled patches provides inferior performance and propose an acceptance-radius based
clustering approach for recognition and detection. [84] propose a data independent
approach to construct a visual vocabulary by discritizing the feature space using a
regular lattice for image classification. [11] propose an approach for estimating code-
book weights especially in scenarios when there are insufficient training samples to
construct a large size visual codebook. The abovementioned approaches mainly aim
at improving the visual codebook construction stage, whereas the novelty of our
proposed method is that we use feature weighting as a mechanism to bind color and
shape visual cues.

Humans have an outstanding ability to perform various kinds of visual search
tasks constantly. But how is it that the human visual system does this job with little
effort and can recognize a large number of object categories with such an apparent
ease? Research on the human vision system suggests that basic visual features
such as shape and color are processed in parallel, and are not combined in an early
fusion manner. For example, in the two-stage architecture of the well known Feature
Integration Theory by [81], the processing of basic features in an initially parallel
way is done in the first stage, also known as the “preattentive stage”. These basic
visual features processed separately are loosely bundled into objects before they are
binded into a recognizable object [103, 104]. It is further asserted that the basic
features are initially represented separately before they are integrated at a later
stage in the presence of attention. Similarly, we propose a framework where color
and shape are processed separately. Other than late fusion, where histograms of
individual features are concatenated after processing, we propose to combine color
and shape by separately processing both visual cues and then modulating the shape
features using color as an attention cue.

Several computational models of visual attention have been proposed previously.
The work of [83] uses top-down attention and local winner-take-all networks for tun-
ing model neurons at the attended locations. [32] propose a model for bottom-up
selective visual attention. The visual attention mechanism has been based on serial
scanning of a saliency map computed from local feature contrasts. The saliency map
computed is a two-dimensional topographic representation of conspicuity or saliency
for every pixel in the image. The work was further extended by [96] from salient
location to salient region-based selection. [57] propose a coherent computational
approach to the modeling of bottom-up visual attention where contrast sensitivity
functions, perceptual decomposition, visual masking, and center-surround interac-
tions are some of the features implemented in the model. [71] introduce a spatial
attention model that can be applied to both static and dynamic image sequences
with interactive tasks. [23] propose a top-down visual saliency framework that is
intrinsically connected to the recognition problem and closely resembles to various
classical principles for the organization of perceptual systems. The method aims at
two fundamental problems in discriminant saliency, feature selection and saliency
detection. In summary, the visual attention phenomenon has been well studied in
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the fields of psychology and neuroscience but still has not been investigated within
the bag-of-words framework for combining multiple visual cues.

3.3 Early and Late Feature Fusion

In this section, we analyze the two well-known approaches to incorporate multiple
cues within the bag-of-words framework, namely early and late-fusion.

Before discussing early and late fusion in more detail, we introduce some math-
ematical notations. In the bag-of-words framework a number of local features fij,
j=1...M i are detected in each image I i, i=1,2,...,N , where M i is the total number
of features in image i. Examples of commonly used detectors are multi-scale grid
sampling and interest point detectors such as Laplace and Harris corner detector.
Generally, the local features are represented in visual vocabularies which describe
various image cues such as shape, texture, and color. We focus here on shape and
color but the theory can easily be extended to include other cues. We assume that
visual vocabularies for the cues are available, Wk = {wk

1, ...,w
k
Vk} , with the visual

words wk
n, n=1,2,...,V k and k ∈ {s, c, sc} for the two separate cues shape and color

and for the combined visual vocabulary of color and shape. The local features fij
are quantized differently for the two approaches: by a pair of visual words (ws

ij,w
c
ij)

for late fusion and by single shape-color word wsc
ij in the case of early fusion. Thus,

wij
k ∈Wk is the jth quantized feature of the ith image for a visual cue k.

For a standard single-cue bag-of-words, images are represented by a frequency
distribution over the visual words:

h
(
wk
n|I i
)
∝

M i∑
j=1

δ
(
wk

ij,w
k
n

)
(3.1)

with

δ (x, y) =

{
0 for x 6= y
1 for x = y

(3.2)

For early fusion, thus called because the cues are combined before vocabulary con-
struction, we compute histogram h (wsc|I i). For late fusion we compute histograms
h (ws|I i) and h (wc|I i) and concatenate the distributions. It is important to intro-
duce a parameter balancing the relative weight between the different cues. For the
results of early and late fusion reported in this work we learn the parameter by
means of cross-validation on the validation set.

Late and early fusion methods lead to different image representations and there-
fore favor different object categories. To better understand their strengths we per-
form an experiment on the PASCAL VOC 2007 data set which contains a wide
variety of categories. Both early and late fusion results are obtained using SIFT
and Color Names descriptors. The results are presented in Fig 3.2. The axis shows
the difference between the average precision (AP) scores of early and late fusion
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Figure 3.2: Difference in average precision (AP) scores of early and late fusion
schemes for the 20 categories of PASCAL VOC 2007 data set. Vertical axis does
not contain information. Half of the categories are better represented by early
fusion (red) and half by late fusion(blue).

schemes (e.g. bicycle has a 5% higher score when represented by late fusion than by
early fusion, and for airplane both representation yield similar results). The results
clearly show that neither of the two fusion approaches perform well for all object
categories.

Most man-made categories namely, bicycle, train, car and buses performs better
with late fusion over its early fusion counterpart. The only exception in this case is
the boat category which is better represented by early fusion. On the other hand,
natural categories such as cow, sheep, dog, cat, horse etc. are better represented by
early fusion. The bird category is the only outlier among natural categories which
provides superior performance with late fusion instead of early fusion. Better than
the distinction between man-made and natural categories is the distinction between
color-shape dependency and color-shape independency of categories. This explains
the location of most of the categories along the axes, including the birds class which
is represented by a large variety of bird species with widely divergent colors, and the
boat class which contains mainly white boats. The difference in strength of early
and late fusion on different object categories is illustrated in Fig 3.3.
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Figure 3.3: Graphical explanation of early and late fusion approaches. Note that
for some classes early fusion scheme performs better where as for some categories,
late fusion outperforms early fusion methods.

Based on the above analysis of early and late fusion we conclude that, to combine
multiple cues, two properties are especially desired. The first property is feature
compactness. Having this property implies constructing a separate visual vocabulary
for both color and shape. This is especially important for classes which have color-
shape independency. Learning these classes from a combined shape-color vocabulary
only complicates the task of the classifier. Late fusion possesses the property of
feature compactness, whereas early fusion lacks it. The second property is feature
binding. This property refers to methods which combine color and shape information
at the local feature level (as desired for categories with color-shape dependency).
This allows for the description of blue corners, red blobs, etc. Early fusion has this



3.4. Color Attention for Object Recognition 29

property since it describes the joined shape-color feature for each local feature. Late
fusion, which separates the two cues, only to combine them again at an image-wide
level, lacks this property.

3.4 Color Attention for Object Recognition

In the previous section we elaborated two approaches to combine color and shape
features. In this section, we propose an attention-based image representation. Fea-
ture binding and feature compactness will be achieved by modulating shape features
with bottom-up and top-down components of color attention.

3.4.1 Attention-based Bag-of-Words

We define a generalization of the bag-of-words as given by Eq. 3.3, called attention-
based bag-of-words :

h
(
wk
n|I i
)
∝

M i∑
j=1

aijδ
(
wk

ij,w
k
n

)
, (3.3)

where aij are the attention-weights which modulate feature wk
ij. Choosing the aij

weights to be equal to one reduces the equation to standard bag-of-words. The
weights can be interpreted as attention maps, essentially determining which features
wk are relevant.

Next, we apply attention-based bag-of-words to combine color and shape. For
this purpose we separate the functionality of the two visual cues. The shape cue will
function as descriptor cue, and is used similar as in the traditional bag-of-words.
The color cue is used as an attention cue, and determines the impact of the local
features on the image representation. To obtain our image representation, color
attention is used to modulate the shape features according to:

h
(
ws
n|I i, class

)
∝

M i∑
j=1

a (xij, class) δ
(
ws

ij,w
s
n

)
, (3.4)

where a (xij, class) denotes the color attention of the jth local feature of the ith

image and is dependent on both the location xij and the class. The difference
to standard bag-of-words is that in regions with high attention, shape-features are
given more weight than in regions with low attention. This is illustrated in the two
attention-based bag-of-words histograms in Fig. 3.1 where the attention map of the
butterfly results in a bag-of-words representation with an increased count for the
visual words relevant to butterfly (and similarly for the flower representation). Note
that all histograms are based on the same set of detected shape features and only
the weighting varies for each class. As a consequence a different distribution over
the same shape words is obtained for each class.
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Similarly as for human vision we distinguish between bottom-up and top-down
attention:

a (xij, class) = ab (xij) at (xij, class) . (3.5)

Here ab (xij) is the bottom-up color attention based on the image statistics and high-
lights the most salient color locations in an image. The top-down color attention
is represented by at (xij, class), describing our prior knowledge about the color ap-
pearance of the categories we are looking for. The two components will be discussed
in detail later.

Two parameters are introduced to tune the relative contribution of the two at-
tention components:

a (xij, class) =
(
ab (xij)

(1−β) at (xij, class)
β
)γ
. (3.6)

The parameter, γ, is used to control the influence of color versus shape information.
For γ = 0 we obtain a standard bag-of-words based image representation where a
higher value of γ denotes more influence of color attention. The second parameter,
β, is employed to vary the contribution of top-down and bottom-up attention, where
β = 0 indicates only bottom-up attention and β = 1 means only top-down attention.
Both γ and β parameters are learned through cross-validation over the validation
set.

The image representation proposed in Eq. 3.4 does not explicitly code the color
information. However, indirectly color information is hidden in these representa-
tions since the shape-words are weighted by the probability of the category given
the corresponding color-word. Some color information is expected to be lost in the
process, however the information most relevant to the task of classification is ex-
pected to be preserved. Furthermore, our image representation does combine the
two properties feature binding and feature compactness. Firstly, feature compactness
is achieved since we construct separate visual vocabularies for both color and shape
cues. Secondly, feature binding is achieved by the top-down modulation as follows
from Eq. 3.4. Consequently, we expect to obtain better results by combining both
these properties into a single image representation.

The attention framework as presented in Eq. 3.3 recalls earlier work on the
feature weighting techniques [99]. Replacing aij = an transforms the equation to
a classical feature weighting scheme in which separate weights for each feature are
introduced, allowing to leverage their relative importance and reduce the impact
of noisy features. The main difference with our approach is twofold. Firstly, our
weighting is dependent on the position in the image (as indexed by i) which allows
for the feature binding. Secondly, we use a different cue, the attention cue, to
compute the weight. As a consequence, the final image representation is based on
the combination of the two cues, color and shape.
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Figure 3.4: An overview of our method. Other than the classical bag-of-words
approach, our method modulates the shape features with bottom-up and top-down
color attention. Bottom-up attention is based on image statistics to indicate the
most salient color regions whereas the top-down attention maps provide class-
specific color information. As a result, a class-specific histogram is constructed by
giving prominence to those shape visual-words that are considered relevant by the
attention maps.

3.4.2 Top-down Color Attention

Here we define the top-down component of color attention of local features to be
equal to the probability of a class given its color values and it is defined by:

at (xij, class) = p
(
class|wc

ij

)
. (3.7)

The local color features at the locations xij are vector quantized into a visual vocab-
ulary where wc

ij describes a visual word. The probabilities p
(
class|wc

ij

)
are computed

using Bayes theorem,

p (class|wc) ∝ p (wc|class) p (class) (3.8)

where p (wc|class) is the empirical distribution,

p (wc
n|class) ∝

∑
Iclass

M i∑
j=1

δ
(
wkij,w

c
n

)
, (3.9)
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Figure 3.5: Top-down color attention and bottom-up saliency maps. First row:
a liverpool class category image from soccer data set, color attention map followed
by the saliency map. Second row: a snowdrop flower species image from flower
data set, color attention map followed by the saliency map.

obtained by summing over the indexes of the training images for the category Iclass .
The prior over the classes p (class) is obtained from the training data. For categories
where color is irrelevant, p (class|wc) is uniform and our model simplifies to the
standard bag-of-words representation. If the bounding box information is available
it was found that the probabilities computed only from features inside the bounding
boxes provide better results. Thus when available we used bounding box knowledge
available to obtain the probabilities.

If we compute p (class|wc) for all local features in an image we can construct a
top-down class-specific color attention map. Several examples are given in Fig. 3.5.
The color attention map is used to modulate the local shape features. Each category
provides its own attention map, consequently, a different histogram is constructed
for each category. The final image representation is constructed by concatenating
the category-specific histograms. The image representation is normalized before
classification.

3.4.3 Bottom-up Color Attention

Bottom-up attention is employed to determine salient locations obtained from visual
features such as color, intensity, orientation etc in an image. Contrary to top-down
attention, bottom-up attention is independent of the object categories since it is not
task dependent. In this work, we apply the color saliency boosting method [90] to



3.4. Color Attention for Object Recognition 33

compute bottom-up attention maps. The color saliency boosting algorithm is based
on the application of information theory to the statistics of color image derivatives.
It has been successfully applied to image retrieval and image classification [80,86].

Let fx = (Rx Gx Bx)T be the spatial image derivatives. The information content
of first order derivatives in a local neighborhood is given by

I(fx) = −log(p(fx)) (3.10)

where p(fx) is the probability of the spatial derivative. The equation states that a
derivative has a higher information content if it has a low probability of occurrence.
In general, the statistics of color image derivatives are described by a distribution
which is dominated by a principal axis of maximum variation along the luminance
direction, and two minor axes, attributed to chromatic changes. This means that
changes in intensity are more probable than chromatic changes and therefore contain
less information content. The color derivative distribution can be characterized by
its second-order statistics, i.e. its covariance matrix Σx = E[fxf

T
x ]. When we apply

a whitening transformation to the image derivatives according to, gx = Σ
− 1

2
x fx, this

will result in a more homogeneous derivative distribution for gx, in which the dom-
inant variations in the intensity axes are suppressed, and the chromatic variations
are enforced. As a result points with equal derivative strength, ‖gx‖, have similar
information content.

Similar as in [93] we apply color boosting to compute a multi-scale contrast color
attention map:

ab (x) =
∑
σ∈S

∑
x′∈N(x)

∥∥∥∥(Σσ
x)−

1
2 (fσ (x)− fσ (x′))

∥∥∥∥ (3.11)

where fσ is the Gaussian smoothed image at scale σ, N(x) is a 9x9 neighborhood
window, moreover S =

[
1,
√

2, 2, 2
√

2, ...., 32
]
. We compute Σσ

x from the derivatives
at scale σ from a single image. The approach is an extension of the multi-contrast
method by [52] to color. Examples of bottom-up attention maps are given in Fig. 3.5.
These images demonstrate that the dominant colors are suppressed and the colorful,
less frequent, edges are enhanced.

3.4.4 Multiple Cues

The proposed method can easily be extended to include multiple bottom-up and
top-down attention cues. In this work we have also evaluated multiple top-down
attention cues. For q top-down attention cues we compute

a (xij, class) = a1t (xij, class)× ...× aqt (xij, class) . (3.12)

Note that the dimensionality of the image representation is independent of the num-
ber of attention cues. In the experiments, we shall provide results based on multiple
color attention cues.
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3.4.5 Relation to Interest Point Detectors

In bag-of-words two main approaches to feature detection can be distinguished [58].
Ignoring the image content dense sampling extracts features on a dense grid at
multiple scales in the image. Interest point detectors adjust to the image by sampling
more points from regions which are expected to be more informative. Examples
of the most used interest point detectors are Harris-Laplace, Hessian and Laplace
detectors. Here we show that interest point detectors can also be interpreted to be
a shape-attention weighted version of a dense multi-scale feature detector.

Consider the following equation for attention based bag-of-words:

h
(
ws
n|I i, class

)
∝

M i∑
j=1

a (xijσ) δ
(
ws

ijσ,w
s
n

)
, (3.13)

where σ has been added to explicitly indicate that at every location multiple scales
are taken into consideration. Interest point detectors can be considered as providing
the function a (xijσ) which is one for feature locations and scales which were detected
and zero otherwise. For example the Laplace detector computes the function a (xijσ)
by finding the maxima in the Laplace scale-space representation of the image, and
thereby providing a scale invariant blob detector. In these cases the shape-attention
is bottom-up since the same detector is used invariably for all classes. The impor-
tance of interest point detectors versus dense sampling is much researched [56,58,64]
and is not further investigated in this chapter.

Of interest here is the insight this gives us in the working of color attention.
Although color attention does not have the hard assignment which is applied in
traditional interest point detectors (selecting some features and ignoring others),
the weights a (xij, class) could be understood as a color based ’soft’ interest point
detector, where some features have more weights than others. Furthermore, since
the weights are class dependent, the resulting histograms can be interpreted as being
formed by class-specific interest point detectors.

3.5 Experiments

In this section we first explain the experimental setup followed by an introduction to
the data sets used in our experiments. The data sets have been selected to represent
a varied importance of the two visual cues namely, color and shape. We then present
the results of our proposed method on image classification. Finally, the results are
compared to state-of-the-art methods fusing color and shape.
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Figure 3.6: Examples from the four data sets. From top to bottom: Soccer,
Flower, PASCAL VOC and Caltech-101 data sets.

3.5.1 Experimental Setup

To test our method, we have used a standard multiscale grid detector along with
Harris-Laplace point detector [58] and a blob detector. We normalized all the patches
to a standard size and descriptors are computed for all regions in the feature de-
scription step. A universal visual vocabulary representing all object categories in
a data set is then computed by clustering the descriptor points using a standard
K-means algorithm. In our approach the SIFT descriptor is used to create a shape
vocabulary. A visual vocabulary of 400 is constructed for Soccer and Flower data
sets. For Pascal VOC 2007 and 2009 data sets, a 4000 visual-word vocabulary is
used. A visual vocabulary of 500 is employed for the Caltech-101 data set. To
construct a color vocabulary, two different color descriptors, namely the color name
(CN) descriptor [88,89] and hue descriptor (HUE) [87]. Since color names has more
discriminative power than hue we used a larger vocabulary for CN than for HUE
for all datasets.

We abbreviate our results with notation convention CA(descriptor cue, attention cues)
where CA stands for the integrated bottom-up and top-down components of color at-
tention based bag-of-words and TD(descriptor cue, attention cue) where TD stands
for Top-Down attention based bag-of-words representation. We shall provide results
with one attention cue CA(SIFT, HUE), CA(SIFT, CN), and color attention
with two attention cues CA(SIFT, {HUE,CN}) combined by using Eq. 3.12. The
final image representation input to an SVM classifier is equal to the size of shape
vocabulary times the number of object categories in the data set. In our experi-
ments we use a standard non-linear SVM. A single γ and β parameter is learned for
Soccer and Flower data set. For Caltech-101 parameters are learned globally for the
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whole data set whereas for the PASCAL VOC data sets class-specific parameters
are learned.

We compare our method with the standard methods used to combine color and
shape features from literature: early fusion and late fusion. We perform early and
late fusion with both CN and HUE descriptors. We also compare our approach with
methods that combine color and shape at the classification stage by combining the
multiple kernel responses. Recently, an extensive performance evaluation of color
descriptors has been presented by [86]. We compare our results to the two descriptors
reported to be superior. OpponentSIFT uses all the three channels (O1, O2, O3) of
the opponent color space. The O1 and O2 channels describe the color information
in an image whereas O3 channel contains the intensity information in an image.
The C-SIFT descriptor is derived from the opponent color space as O1

O3
and O2

O3
,

thereby making it invariant with respect to light intensity. Furthermore, it has
also been mentioned by [86] that with no prior knowledge about object categories,
OpponentSIFT descriptor was found to be the best choice.

3.5.2 Image Data Sets

We tested our method on five different and challenging data sets namely Soccer,
Flower, PASCAL VOC 2007 and 2009 and Caltech-101 data sets. The data sets
vary in the relative importance of the two cues, shape and color.

The Soccer data set 3 consists of 7 classes of different soccer teams [87]. Each
class contains 40 images divided in 25 train and 15 test images per class. The Flower
data set 4 consists of 17 classes of different variety of flower species and each class
has 80 images. We use both the 40 training and 20 validation images per class
(60) to train [61]. We also tested our approach on PASCAL VOC data sets [17,18].
The PASCAL VOC 2007 data set 5 consists of 9963 images of 20 different classes
with 5011 training images and 4952 test images. The PASCAL VOC 2009 data
set 6 consists of 13704 images of 20 different classes with 7054 training images and
6650 test images. Finally, we tested our approach on Caltech-101 data set. The
Caltech-101 data set 7 contains 9144 images of 102 different categories. The number
of images per category varies from 31 to 800. Fig. 3.6 shows some images from the
four data sets.

3The Soccer set at http://lear.inrialpes.fr/data
4The Flower set at http://www.robots.ox.ac.uk/vgg/
5The PASCAL VOC Challenge 2007 at http://www.pascal-

network.org/challenges/VOC/voc2007/
6The PASCAL VOC Challenge 2009 at http://www.pascal-

network.org/challenges/VOC/voc2009/
7The Caltech-101 data set at http://www.vision.caltech.edu/ImageDatasets/Caltech101/
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3.5.3 Attention Cue Evaluation

We propose to combine color and shape by modulating shape features using color
as an attention cue. The same framework can be used to modulate color features
by exchanging the roles of color and shape. Table 3.1 provides results of our experi-
ments where we investigate shape-shape attention, color-color attention, shape-color
attention and color-shape attention. Experiments are performed on both Soccer and
Flower data sets. The results in Table 3.1 suggest that color is the best choice as an
attention cue, which coincides with the previous works done in visual attention liter-
ature [35,104]. Therefore, in the following experiments color is used as an attention
cue to modulate the shape features. 8

Attention− Cue Descriptor−Cue Soccer F lower

Shape Shape 50 69

Color Color 79 66

Shape Color 78 69

Color Shape 87 87

Table 3.1: Classification Score (percentage) on Soccer and Flower Set Data sets.
The results are based on top-down color attention obtained by using different
combinations of color and shape as attention and descriptor cues.

3.5.4 Soccer Data Set: color predominance

Image classification results are computed for the Soccer data set to test color and
shape fusion under conditions where color is the predominant cue. In this data set
the task is to recognize the soccer team present in the image. In this case, the color
of the player’s outfit is the most discriminative feature available.

The results on the Soccer data set are given in Table 3.2. The importance of color
for this data set is demonstrated by the unsatisfactory results of shape alone where
an accuracy of 50% is obtained. Color Names performed very well here due to their
combination of photometric robustness and the ability to describe the achromatic
regions. A further performance gain was obtained by combining hue and color name
based color attention. In all cases combining features by color attention was found
to outperform both early and late fusion. We also combine color and shape by taking
the product of the two kernels obtaining a classification score of 91%. Note that
also for both early and late fusion the relative weight of color and shape features
is learned by cross-validation. The best results are obtained by combining the top-
down and bottom-up attention demonstrating the fact that both types of attentions
are important for obtaining best classification results.

Our method outperforms the best results reported in literature [88], where a

8In an additional experiment, we tried improving the results by using a color-shape descriptor
cue and an attention cue. This was found to deteriorate the recognition performance.
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score of 89% is reported, based on a combination of SIFT and CN in an early
fusion manner. Further we compare to C-SIFT and Opp-SIFT [86] which provide
an accuracy of 72% and 82% respectively. The below expected results for C-SIFT
might be caused by the importance of the achromatic colors to recognize the team
shirts (for example, Milan outfits are red-black and PSV outfits are red-white). This
information is removed by the photometric invariance of C-SIFT. Our best results
of 96% is obtained when color has greater influence over shape (γ=3) which is also
analogous to the unsatisfactory results of shape alone. Moreover, top-down attention
has more influence than bottom-up attention (β=0.6).

Method (SIFT,HUE) (SIFT,CN) (SIFT,(CN,HUE))

EarlyFusion 84 88 90

LateFusion 81 86 88

TD 87 90 94

CA 90 91 96

Table 3.2: Classification scores (percentage) for various fusion approaches on
Soccer Data set. The best results are obtained by CA outperforming the other
fusion methods by 5%.

3.5.5 Flower Data Set: color and shape parity

Image classification results on the Flower data set show the performance of our
method on a data set for which both shape and color information are essential. The
task is to classify the images into 17 different categories of flower-species. The use
of both color and shape are important as some flowers are clearly distinguishable by
shape, e.g. daisies and some other by color, e.g. fritillaries.

Method (SIFT,HUE) (SIFT,CN) (SIFT,(CN,HUE))

EarlyFusion 87 88 89

LateFusion 86 87 88

TD 90 90 91

CA 93 94 95

Table 3.3: Classification Scores (percentage) for various fusion approaches on
Flower Data set. CA is shown to outperform existing fusion approaches by 6%.

The results on flower data set are given in Table 3.3. As expected on this data
set early fusion provides better results compared to late fusion. 9. Again combining
color and shape by color attention obtains significantly better results than both early
and late fusion. We also significantly outperform both C-SIFT and OpponentSIFT
which provide classification scores of 82% and 85% respectively.

9We also performed an experiment for combining our color and shape features by using MKL.
However, slightly better results of 86% were obtained by using a simple product of different kernel
combinations which is similar to the results provided by [26].
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On this data set our method surpassed the best results reported in literature [26,
63,66,107]. The results reported on this data set by [63] is 88.3% where shape, color
and texture descriptors were combined along with the segmentation scheme proposed
by [62]. On the other hand neither segmentation nor any bounding box knowledge
have been used in our method. A more proximal comparison with our approach
is that of [107] where a result of 89.02% was obtained by combining the spatial
pyramids of SIFT with OpponentSIFT, C-SIFT, rgSIFT and RGBSIFT respectively
using a bin-ratio dissimilarity kernel. 10

In Fig. 3.7 the classification score as a function of γ and β is provided. Our
best result of 95% is obtained with a significant color influence (γ=2). Moreover,
for this data set bottom-up attention has the same influence as top-down attention
(β=0.5). It can also be seen that bottom-up attention alone improves results from
69% to 76%.

3.5.6 PASCAL VOC Data Sets: shape predominance

We test our approach where the shape cue is predominant and color plays a subor-
dinate role and report image classification results on the PASCAL VOC 2007 and
2009 data sets. The PASCAL VOC 2007 data set contains nearly 10,000 images
of 20 different object categories. The 2009 PASCAL VOC data set contains 13704
images of 20 different categories. For these data sets the average precision is used
as a performance metric in order to determine the accuracy of recognition results.

On this data set, shape alone provides a MAP of 53.7 on this data set. A
MAP of 49.6 is obtained using C-SIFT. This drop in performance is caused by
the categories having color-shape independency which effects early fusion based
approaches. Table 3.4 shows the results of different color-shape fusion schemes.
Among the existing approaches late fusion provides the best recognition performance
of 56.0. Our proposed framework obtains significantly better results and doubles the
gain obtained by color. Our best results of 58.0 is obtained by the combination of
bottom-up and top-down attention. For categories such as plants and tvmonitor,
color is more important than shape (γ=3) where as for categories like sheep, sofa
and cars shape is more influential as compared to color (γ=1). For categories such
as cow, dogs and bottle bottom-up attention plays an important role. However, for
most categories top-down attention plays a larger role than bottom-up attention on
this data set.

The results per object category are given in Fig. 3.8. It is worthy to observe that
our approach performs substantially better over early and late fusion approaches on
a variety of categories. Recall that early fusion approaches lack feature compactness
and struggle with categories where one cue is constant and the other cue varies
considerably. This behavior can be observed in object categories such as motorbike,

10The result reported by [31] is not the recognition score commonly used to evaluate the classi-
fication performance on Flower data set and therefore is not compared with our approach.
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Figure 3.7: Recognition performance as a function of γ and β for the Flower data
set. From a shape only representation (γ=0 and β=0) the score goes up from 69%
to 95% by leveraging the influence of color versus shape and the two components
of color attention.

bird etc. In such classes early fusion provides below-expected results. On the other
hand, late fusion lacks feature binding as it struggles over categories characterized
by both color and shape. This is apparant in categories such as cat, sheep, cow
where early fusion provides better results over late fusion. Our approach, which
combines the advantages of both early and late fusion, obtains good results on most
type of categories in this data set.

To illustrate the strength of different image representations, Table 3.5 shows
images of different object categories from the PASCAL VOC 2007 data set. For
this data set the average precision is used as an evaluation criteria. To obtain an
average precision for each object category, the ranked output is used to compute
the precision/recall curve. Table 3.5 shows example images from bird, pottedplant,
sofa and motorbike categories and their corresponding ranks obtained from different
methods. Early fusion performs better than late fusion on the pottedplant image
since color remains constant (color-shape dependency). For the motorbike image,
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Method (SIFT,HUE) (SIFT,CN) (SIFT,(CN,HUE))

EarlyFusion 54.6 54.8 55.7

LateFusion 55.3 55.6 56.0

TD 56.6 56.8 57.5

CA 57.0 57.5 58.0

Table 3.4: Mean Average Precision on PASCAL VOC 2007 Data Set. Note that
our results significantly improve the performance over the conventional methods
of combining color and shape namely, Early and Late feature fusion.

Ranking of Different Object Categories

Method

SIFT 1243 697 1325 155
Early Fusion 196 65 654 124
Late Fusion 183 164 64 30
Color Atten-
tion

10 13 36 87

Table 3.5: Images from bird, pottedplant, motorbike and sofa categories from the
PASCAL VOC 2007 data set. The number indicates the rank for the correspond-
ing object category. A lower number reflects higher confidence on the category
label. The object category list contains 4952 elements in total. Color attention
outperforms SIFT, early and late fusion on the bird, pottedplant and sofa cate-
gory images. On motorbike category late fusion provides better ranking than color
attention.

which possesses color-shape independency, late fusion performs best. Color attention
outperforms other approaches on the first three example images.

The best entry in PASCAL 2007 VOC was by [56] where a mean average precision
of 59.4 was reported by using SIFT, Hue-SIFT, spatial pyramid matching and a novel
feature selection scheme. Without the novel feature selection scheme a mean average
precision of 57.5 was reported. A similar experiment was performed by [86] where all
the color descriptors (C-SIFT, rg-SIFT, OpponentSIFT and RGB-SIFT) were fused
with SIFT and spatial pyramid matching to obtain a map of 60.5. Recently, [30]
obtained a mean average precision of 63.5 by combining object classification and
localization scores. A MAP of 64.0 is reported by [115] using shape alone with a
superior coding scheme. This scheme yields a gain of 19.4% over standard vector-
quantization used in our framework.

Table 3.6 shows the results obtained on 2009 PASCAL VOC data set. Our
proposed approach outperforms SIFT over all the 20 categories.
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Figure 3.8: Results per category on PASCAL VOC 2007 data set: the results are
split out per object category. Note that we outperform Early and Late Fusion in
16 out of 20 object categories.

For the PASCAL 2009 challenge submission, we further combine the color at-
tention method with additional ColorSIFT [86], spatial pyramid matching and com-
bining the classification scores with detection results [30]. We follow the classical
bag-of-words pipeline where for each image different features are detected. A variety
of feature extraction schemes such as GIST [65] are employed afterwards followed
by vocabulary and histogram construction. Spatial information is captured using
spatial pyramid histograms [47] by dividing the image into 2 × 2 (image quarters)
and 1× 3 (horizontal bars) subdivisions. We compressed the visual vocabularies us-
ing the agglomerative information bottleneck approach [22]. Finally, color attention
is combined to provide as an input to the classifier. By using SIFT, we obtained a
mean average precision (MAP) of 51.0 on the validation set. By adding color atten-
tion, we obtained a significant performance gain with a MAP score of 56.2. Finally
we added additional descriptors to achieve a MAP of 59.4. Our final submission
which also included the object localization results obtained best results on potted
plants and tvmonitor category in the competition 11.

11PASCAL VOC 2009 at, http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/results/
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Method Voc Size Mean AP

SIFT 4000 52.1

TD(SIFT,CN) 4000, 500 55.1

TD(SIFT,HUE) 4000, 300 54.9

TD(SIFT, {CN,HUE}) 4000, {500, 300} 56.1

CA(SIFT,CN) 4000, 500 55.6

CA(SIFT,HUE) 4000, 300 55.4

CA(SIFT, {CN,HUE}) 4000, {500, 300} 56.4

Table 3.6: Mean Average Precision on PASCAL VOC 2009 dataset. Note that
our results significantly improve the performance over the conventional SIFT de-
scriptor.

3.5.7 Caltech-101 Data Set: color and shape co-interference

Finally, our approach is tested in a scenario where combining color with shape has
shown to consistently deteriorate the results in literature [5,26,91,94]. Several factors
hamper the performance of color features in this data set: low image quality, number
of grayscale images (5%), many graphics-based images in different object categories
(i.e. garfield, pigeon, panda etc.) and several object categories (i.e. scissors, Buddha
etc.) containing the object placed on a variable color background.

The Caltech-101 data set contains 9000 images divided into 102 categories. We
followed the standard protocol [5, 26, 47] for our experiments by using 30 images
per category for the training and upto 50 images per category for testing. Multi-
way image classification is obtained by empolying a one-vs-all SVM classifier. A
binary classifier is learned to distinguish each class from the rest of the categories.
For each test image, the category label of the classifier is assigned that provides
the maximum response. We provide results over all 102 categories and the final
recognition performance is measured as the mean recognition rate per category.

Method Voc Size Score

SIFT 500 73.3

EarlyFusion(SIFT,CN) 1000 70.6

LateFusion(SIFT,CN) 500 + 500 74.9

OpponentSIFT 1000 66.3

C − SIFT 1000 59.7

TD(SIFT,CN) 500, 500 74.7

CA(SIFT,CN) 500, 500 76.2

Table 3.7: Recognition results on Caltech-101 Set. Note that conventional early
fusion based approaches to combine color and shape provide inferior results com-
pared to the results obtained using shape alone.

Table 3.7 shows the results obtained using spatial pyramid representations upto
level 2. Among the existing approaches, only late fusion provides a gain over shape
alone. For all early fusion approaches inferior results are obtained compared to
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Figure 3.9: Left figure: comparison of gain over shape obtained by early fusion
(∆EF ) to gain obtained by color attention (∆CA). Every dot represents one of
the Caltech-101 categories. All points above the origin show an advantage of early
fusion over shape. All points on the right of origin depict a gain of color attention
over shape. For all points below the diagonal color attention outperforms early
fusion. Similar results for late fusion are shown in the figure on the right.

shape alone. Our approach that combines the strength of both early and late fusion
improves the recognition performance on this data set. Introducing color informa-
tion is beneficial for some categories such as flamingo-head, pizza, lobster, dolphin
etc. whereas recognition performance of categories such as hedgehog, gramophone,
pigeon, emu etc. are hampered by combining color and shape.

In Fig. 3.9, a performance comparison of early and late fusion versus color atten-
tion is given. For all the categories below the diagonal, color attention outperforms
early and late fusion. As illustrated in Fig. 3.9 for most of the object categories in
this data set, the best results are obtained using color attention.

The best results reported on this data set is 82.1% by [26] using variants of
multiple kernel learning to combine 49 different kernel matrices of 8 different types
of features such as SIFT, ColorSIFT, HOG, LBP, V1S+ etc. Our proposed approach
can be further employed together with previously used features to further boost the
results. In Table 3.8 we compare to other approaches which combine color and shape
cues. Note that we do not learn class-specific weights of the spatial pyramid levels
which has been shown to improve the results significantly [5, 26, 94] mainly due to
the fact that objects are always in the center of the image. Results show that early
fusion combination of color and shape deteriorates results significantly upto 12%.
Our approach improves the overall performance on this data set compared to shape
alone.
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Method Shape Color-Shape Score

[1] 71.6 68.2 −3.4

[91] 52.8 40.8 −12.0

[94] 73.0 63.0 −10.0

[26] 66.4 55.0 −11.4

OurApproach 73.3 76.2 +2.9

Table 3.8: Comparison in performance of shape and color-shape approaches re-
ported in literature with our proposed approach. Note that our method improves
the overall recognition performance over shape alone on Caltech-101 data set.

3.6 Conclusions

In this chapter we have performed an analysis on two existing approaches (early
and late fusion) that combine color and shape features. Experimental results clearly
demonstrate that both these approaches are sub-optimal for a subset of object cat-
egories. This analysis leads us to define two desired properties for feature combi-
nation: feature binding and feature compactness, which in a standard bag-of-words
approach are mutually exclusive.

We present a new image representation which combines color and shape within
the bag-of-words framework. Our method processes color and shape separately and
then combines it by using both bottom-up and top-down attention. The bottom-
up component of color attention is obtained by applying a color saliency method
whereas the top-down component is obtained by using learned category-specific
color information. The bottom-up and top-down attention maps are then used to
modulate the weights of local shape features. Consequently, a class-specific image
histogram is constructed for each category.

Experiments are conducted on standard object recognition data sets. On the two
data sets, Soccer and Flower, where color plays a pivotal role, our method obtains
state-of-the-art results increasing classification rate over 5% compared to early and
late fusion. On the PASCAL VOC data sets, we show that existing methods based on
early fusion underperform for classes with shape-color independency, including many
man-made classes. Results based on color attention show that also for these classes
color does contribute to overall recognition performance. Performance comparison
of our approach to existing fusion approaches has been shown in Table 3.9.

The dimensionality of color attention histogram is equivalent to the number of
object categories times the size of the shape vocabulary. Therefore as a future
research direction, we aim to look at dimensionality reduction techniques such as
PCA and PLS to reduce the dimensionality of color attention histograms. Another
interesting future research line includes looking into other visual features that can be
used as an attention cue. Recently, [48, 49] have applied our model to incorporate
motion features as an attention cue and demonstrated its effectiveness for event
recognition. We believe that top-down guidance can also improve the performance
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Data set SIFT Early Fusion Late Fusion CA

Soccer 50 90 88 96

Flower 69 89 88 95

PASCAL
VOC

53.7 55.7 56.0 58.0

Caltech-101 73.3 70.6 74.9 76.2

Table 3.9: Comparison of our approach with existing fusion approaches on various
data sets. Note that our approach outperforms early and late fusion on all data
sets.

in several other applications such as object detection and action recognition.



Chapter 4

Discriminative Compact Pyramids
for Object and Scene Recognition1

Spatial pyramids have been successfully applied to incorporating spatial informa-
tion into bag-of-words based image representation. However, a major drawback is
that it leads to high dimensional image representations. In this chapter, we present
a novel framework for obtaining compact pyramid representation. Firstly, we in-
vestigate the usage of the divisive information theoretic feature clustering (DITC)
algorithm in creating a compact pyramid representation. In many cases this method
allows to reduce the size of a high dimensional pyramid representation up to an order
of magnitude with little or no loss in accuracy. Furthermore, comparison to clus-
tering based on agglomerative information bottleneck (AIB) shows that our method
obtains superior results at significantly lower computational costs. Moreover, we
investigate the optimal combination of multiple features in the context of our com-
pact pyramid representation. Finally, experiments show that the method can obtain
state-of-the-art results on several challenging datasets.

4.1 Introduction

Bag-of-words based image representation is one of the most successful approaches for
object and scene recognition [1,7,12,14,21,46,59,72,86,113]. The first stage in the
method involves selecting key points or regions followed by a suitable representation
of these key points using robust local descriptors, like SIFT [53]. The descriptors are
then vector quantized into a visual vocabulary, after which an image is represented as
a histogram over visual words. The final representation lacks any spatial information

1Accepted for publication by Pattern Recognition Journal [15].
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since the location of the local features is ignored. This is generally considered as the
foremost shortcoming of the standard bag-of-words representation.

Including spatial information into bag-of-words has therefore received consider-
able attention. The spatial pyramid scheme proposed by [47] is a simple and compu-
tationally efficient extension of an order-less bag-of-words image representation, as
it captures the spatial information in such a way that traditional histogram-based
image representations do not. This technique works by representing an image using
multi-resolution histograms, which are obtained by repeatedly sub-dividing an im-
age into increasingly finer sub-regions. The final representation is a concatenation
of the histograms of all the regions. Many applications, such as classification and
detection, [16,19,42,105,106] benefit form the spatial pyramid representation.

However, spatial pyramids have a major drawback due to the high dimensionality
of the generated histograms while going towards the finest level of representation.
This drawback is especially apparent for challenging data sets such as Pascal VOC
where it is found that large size visual vocabularies generally improve the overall
results. The combination of large vocabularies with spatial pyramids can easily lead
to image representations as big as 4194K words (e.g. [109]). If these large pyramid
representation could be optimized for discrimination between different categories,
a more compact representation would be sufficient. This will lead to compact yet
efficient pyramid representations that have the advantages of the original pyramid
representation [47] while avoiding their computational burden. This is precisely
what we aim at, keeping in mind the constraint of reducing the size of the spatial
pyramids while maintaining or even improving the performance.

Many recent works addressed the problem of compact vocabulary construc-
tion [22, 45, 101]. One popular strategy starts with a large vocabulary (e.g. gener-
ated by hierarchical k-means) and subsequently clusters these words together while
intending to maintain the discriminative power of the original vocabulary [13, 78].
Slonim and Tishby [78] proposed a compression technique, denoted as Agglomerative
Information Bottleneck (AIB), that constructs small and informative dictionaries by
compressing larger vocabularies following the information bottleneck principle. In-
terestingly, authors in [22] proposed a fast implementation of the AIB algorithm
and showed good performance for the construction of visual vocabularies. Following
these trends, we will apply the theory and algorithms developed in these works,
for the construction of compact discriminative spatial pyramids. These methods are
especially appropriate due to the high dimensionality of the pyramid representation.

An additional advantage of compact pyramid representations is that it allows
us to combine more features at the same memory usage for image representation.
Combining multiple features especially color and shape has recently shown to pro-
vide excellent results [1, 7, 10, 26, 86, 87] on standard image classification data sets.
The two main most common approaches to combine multiple features are early and
late fusion. Early fusion based schemes combine features before the vocabulary con-
struction phase. In case of late fusion separate visual vocabularies are constructed
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for each feature. Subsequently, the bag-of-word representations (histograms) over
the different vocabularies are concatenated. Both fusion approaches have been in-
vestigated within the context of standard bag-of-words. However, in the context of
spatial pyramids, it is still uncertain which of the two fusion approaches is more ben-
eficial. Therefore, we investigate which fusion approach is more appropriate within
the spatial pyramids framework.

In summary, the objective of this chapter is twofold. Firstly, we show that the
AIB approach used to compress the vocabulary size significantly degrades accuracy
when applied at spatial pyramids. To overcome this problem, we propose to use the
Divisive Information Theoretic Clustering (DITC) technique [13] that preserves the
overall accuracy while reducing the dimensionality of the pyramid histogram signif-
icantly. Our results clearly suggest that pyramid compression based on the DITC
approach provides superior results. Furthermore, DITC is computationally supe-
rior to AIB. Secondly, we evaluate the two existing fusion approaches for combining
multiple features at the spatial pyramids level. We conclude that late fusion signif-
icantly outperforms early fusion based approaches in spatial pyramids. Finally, we
combine both proposed contributions and obtain promising results on challenging
data sets.

This chapter is organized as follows: next section describes the datasets used in
the experiments. Section 3 discusses how AIB and DITC can be used for building
compact pyramids. Subsequently, section 4 proposes both an early and a late fusion
strategies for combining multiple features in the context of spatial pyramids. Section
5 compares our results with current state-of-the-art performance results. Finally,
section 6 concludes this chapter and describes the most important lines of future
research.

4.2 Datasets and Implementation Details

In this section we provide details about the datasets which will be used, followed
by the experimental setup employed to validate the two main contributions of our
approach, namely the use of DITC for vocabulary compression and the use of early
and late fusion in spatial pyramids. Fig. 4.1 shows some example images from the
five data sets.

4.2.1 Data sets

For scene classification, the experiments are performed on Sports Events data set
and 15 category Scenes data set. The Sports Events data set [50] contains 8 sports
event categories collected from the Internet namely: bocce, croquet, polo, rowing,
snowboarding, badminton, sailing, and rock climbing. The number of images in each
category varies from 137 (bocce) to 250 (rowing). For each event class, 70 randomly
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Figure 4.1: Example images from the data sets. From top to down: Butterflies,
Sports Events, 15 class Scenes and PASCAL VOC data sets.

selected images are used for training and 60 are chosen for testing.

The 15 class Scenes recognition data set [47] is composed of fifteen scene cat-
egories. Each category has 200 to 400 images. The major sources of the pictures
in the data set include the COREL collection, personal photographs, and Google
image search.

For object classification, the experiments are performed on Butterflies [44] and
Pascal VOC 2007 and 2009 data sets [16]. The Butterflies data set consists of 619 im-
ages of seven classes of butterflies, namely: Admiral,Swallowtail, Machaon, Monarch
1, Monarch 2, Peacock and Zebra. Finally, the experiments are also performed on
the Pascal Visual Object Classes Challenge (VOC) data sets: the Pascal VOC 2007
data set consists of 9963 images of 20 different classes with 5011 training images
and 4952 test images, while the Pascal VOC 2009 data set contains 13704 images of
20 different object categories with 7054 training images and 6650 test images.

4.2.2 Implementation Details

We shortly discuss the implementation details we use for the bag-of-words based
image classification. We apply a standard multiple-scale grid detector along with
interest point detectors (Harris-Laplace and blob detector). In the feature extraction
step, we use SIFT descriptor [53] for shape features, Color Names [89] descriptor for
color features and the SelfSimilarity descriptor [76] to measure similarity based on
matching the internal self-similarity. We use a standard K-means for constructing
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visual vocabularies. Finally we use a non-linear SVM with intersection kernel for
classification as in [55].

4.2.3 Image Representation using Spatial Pyramids

Spatial pyramid scheme proposed by [47] have recently proven very successful re-
sults. These are formed by representing an image using weighted multi-resolution
histograms, which are obtained by repeatedly sub-dividing an image into increas-
ingly finer sub-regions by doubling the number of divisions in each axis direction
and computing histograms of features over the resulting sub-regions. Resemblances
found at finer resolutions are closer to each other in image space and are therefore
more heavily weighted. To accomplish this, each level l is weighted to l/2L−l, where
L is the total number of pyramid levels considered. When histograms for all sub-
regions at all levels have been created, these histograms are concatenated to form
the final image representation. For example, a level 2 spatial pyramid is constructed
by concatenating a total of 1 + 4 + 16 = 21 histograms.

Although a notable performance gain is achieved by using the spatial pyramid
method, the resulting histogram is often a magnitude higher in dimensionality over
its standard bag-of-words based counterpart 2.

4.3 Compact Pyramid Representation

As discussed in the introduction, one of the main drawbacks of the spatial pyramid
representation is its memory usage. We will discuss two existing approaches, namely
AIB and DITC, which were shown to be successful for compact text document repre-
sentation [13,78]. Only AIB has been applied for compact image representation [22],
and none of them has been studied in the context of spatial pyramids. In this section
we will show experimental results on the Sports Events [50] and 15 class Scenes [47]
data sets to demonstrate that our proposed compact pyramid representation main-
tain the performance of their larger counterparts.

In practice the final size of the pyramid is dependent on the application, where
users have to balance compactness versus classification accuracy. Depending on the
task a smaller representation could be preferred over larger at the cost of performance
(e.g. real-time object detection based on ESS [42,43], or large scale image retrieval
[70]). In the case that users do not want a drop in accuracy but do want to compress
their representation, cross validation could be used to select the optimal cluster
size. Throughout this work we consider that the final representation size is an input
parameter to the compression algorithm.

2The winners of Pascal VOC 2007 [56] showed that dividing an image horizontally 3× 1 yields
better performance than a conventional 4 × 4 structure. The resulting histogram is therefore
reduced from vocabulary size ×21 to vocabulary size ×8
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4.3.1 Highly Informative Compact Spatial Pyramids

Let C be a discrete random variable that takes on values from the set of classes
C={c1,. . . ,cl} and let W be the random variable that ranges over the set of words
W={w1,. . . ,wm}. It is important to note that we consider the number of words
for the spatial pyramid representation to be equal to the number of words used for
the visual vocabulary times the number of subregions in the spatial pyramid. For a
level two pyramid constructed from a 1000 word vocabulary, this will lead to a final
representation of (1 + 4 + 16) × 1000 = 21000 words. We will consider clustering
these 21000 words into a smaller set where each cluster represents words with similar
discriminative power.

The joint distribution p(C,W ) is estimated from the training set by counting the
number of occurrences of each visual word in each category. The information about
C captured by W can be measured by the mutual information,

I(C,W ) =
∑
i

∑
t

p(ci, wt)log
p(ci, wt)

p(ci)p(wt)
, (4.1)

which measures the amount of information that one random variable contains about
the other. Ideally, in forming word clusters we aim at preserving the mutual in-
formation; however usually clustering lowers mutual information. Thus, we aim at
finding word clusters that minimize the decrease in the mutual information:

I(C,W )− I(C,WC). (4.2)

whereWC are the word clusters {W1, . . . , Wk}. Note that this is equal to maximizing
the mutual information I(C,WC). Eq. (4.2) can be rewritten as∑

i

∑
t

πtp(ci|wt)log
p(ci|wt)
p(ci)

−
∑
i

∑
j

∑
wt∈Wj

πtp(ci|wt)log
p(ci|Wj)

p(ci)
(4.3)

where πt is the prior of word, and is given by πt = p(wt).

In the seminal work [13], Dhillon et al. prove that this is equal to

I(C,W )− I(C,WC) =
∑
j

∑
wt∈Wj

πtKL((p(C|wt)), (p(C|Wj))) (4.4)

where the Kullback-Leibler(KL) divergence is defined by

KL(p1, p2) =
∑
x∈X

p1(x)log
p1(x)

p2(x)
. (4.5)

Eq. (4.4) is a global objective function that can be applied to measure the quality
of word clustering. This object function states that we should group words wt
into clusters Wj, in such a way that the summed KL-divergence between the word
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distributions p(C|wt) and their cluster distributions p(C|Wj) is as low as possible.
Since the KL-divergence is a measure of similarity between distributions, we are
clustering words together which contain similar information with respect to the
classes as described in p(C|wt). Next we discuss two existing algorithms which aim
to find the optimal clusters Wj as defined by Eq. (4.4).

AIB Compression [78]: AIB iteratively compresses the dictionary W by merg-
ing the visual words wi and wj that cause the smallest decrease in the mutual infor-
mation given by Eq. (4.1). The decrease in the mutual information is monotonically
reduced after each merge. Merging is iterated until one obtains the desired number
of words. AIB is greedy in nature as it optimizes the merging of just two word
clusters at every step (a local optimization) and thus the resulting algorithm does
not directly optimize the global criteria defined in Eq. (4.4).

DITC Compression [13]: Other than AIB which iteratively reduces the num-
ber of words until then desired number of clusters is reached, DITC immediately
clusters the words into the desired number of clusters (during initialization) after
which it iteratively improves the quality of these clusters. Each iteration mono-
tonically reduces the decline in mutual information as given by Eq. (4.4), therefore
the algorithm is guaranteed to terminate at a local minimum in a finite number of
iterations.

To optimize the global objective function of Eq. (4.4), DITC iteratively performs
the following steps:

1. Compute the cluster distribution p(C|Wj) according to:

p(C|Wj) =
∑
wt∈Wj

πt
π(Wj)

p(C|wt), (4.6)

where, π(Wj) =
∑

wt∈Wj
πt.

2. Re-assign the words wt to the clusters Wj based on their closeness in KL-
divergence:

j∗(wt) = argminjKL(p(C|wt), p(C|Wj)) (4.7)

where, j∗(wt) is new cluster index of the word wt.

The initialization of the k clusters is obtained by first clustering the words into l
clusters, where l is the number of classes. Every word wt is then assigned to cluster
Wj such that p(cj|wt) = maxi p(ci|wt). This strategy guarantees that every word
wt is part of one of the clusters Wj. Subsequently we split each cluster arbitrarily
into bk/lc clusters. In the case that l > k we further merge the l clusters to obtain
k final clusters. The above algorithm is only an approximation of the minimum but
it was found to yield accurate results [13].

The basic implementation of the DITC algorithm can result in a large number
of empty clusters, especially for large vocabularies. To overcome this problem we
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Method Level Size Sports Events 15 Scenes

Pyramid 2 21000 83.8 84.1

PyramidAIB 2 5000 81.5 81.7

PyramidAIB 2 1000 79.8 80.4

PyramidAIB 2 500 78.8 78.3

Table 4.1: Classification Score (percentage) on both the Sports Events and 15
class Scenes Data sets. The results demonstrates that by applying the AIB com-
pression [22] a considerable loss in performance occurred for compact vocabularies.

propose a modified version of the basic DITC algorithm. At each iteration our
algorithm retrieves the index e of the empty word clusters ce, where e ⊂ j. Subse-
quently we assign at least one word wt to each ce. This is done using Eq. (4.7) by
first assigning each word wt to its closest word cluster cj. Based on this assignment,
we select that wt with the maximum KL value returned by Eq. (4.7), i.e. that wt
found at the furthest distance from its currently assigned word cluster cj. Then we
reassign this wt to ce and remove it from cj.

Comparing the computational cost of the two algorithms shows one of the ad-
vantages of DITC: AIB results in high computational cost of O(m3c) operations
as it runs an agglomerative algorithm until k clusters are obtained. Here m is the
total number of words and c is the number of classes in the data set. The fast
implementation of the AIB costs O(m2c). On the other hand, the DITC algorithm
requires Eq. (4.7) to be computed for every pair, P (C|wt) and p(C|Wj) at a cost of
O(mkcτ), where generally k << m. The number of required iterations τ to obtain
convergence is typically around 15. We found DITC in practice to be computation-
ally superior to AIB, obtaining a speedup between one or two orders of magnitude.
On a typical run for obtaining 100 clusters from 20000 words on a data set with 15
classes, AIB (using [22]) took 14460 seconds while DITC converged in 234 seconds
using a standard PC.

4.3.2 Experimental Results

In this section, we compare the two algorithms discussed above on the task of con-
structing compact spatial pyramids. To the best of our knowledge we are the first
to apply DITC to visual word vocabulary construction. Lazebnik and Raginsky [45]
propose a method for discriminative vocabulary construction which uses ideas of the
theory of DITC [13]. However, the word clusters where restricted to lie in Voronoi
cells, whereas in the original algorithm words are clustered without restrictions on
their location in feature space, and thus allowing for multi model distributions. We
show that the pyramid compression based on DITC has a lower loss of discrimina-
tive power, and is computationally more efficient compared to compression based
on AIB [22].

Table 4.1 shows numerical results obtained by applying AIB on both the Sports
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Method Level Size Sports Events 15 Scenes

Pyramid 2 21000 83.8 84.1

PyramidDITC 2 5000 84.2 85.4

PyramidDITC 2 1000 85.6 84.4

PyramidDITC 2 500 84.6 84.2

Table 4.2: Classification Score (percentage) on both the Sports Events and 15
class Scenes data sets. The results demonstrates that DITC successfully compresses
the vocabularies while preserving their discriminative power.

Events and 15 Scenes data sets for different sizes. We started by using vocabulary
of size 1000 for constructing a three level pyramid of 21000 dimensionality, after
which we compress this vocabulary to a dimensionality of 5000, 1000 and 500. We
can notice that by applying AIB compression on the pyramids the performance
drops significantly, especially when we are going towards lower dimensionality. We
attribute this to the fact that the information bottleneck technique is agglomerative
in nature and result in a sub-optimal word clusters because it greedily merges just
two word clusters at every step and it does not directly optimize the global objective
function of Eq. (4.4).

Table 4.2 shows the results obtained using DITC. The main observation is that
the DITC approach succeeds in conserving the discriminative power while reducing
dimensionality of the image representation. Furthermore, for both sets reducing the
dimensionality leads to an improvement of the classification score, and even at the
smallest dimensionality of 500 similar results are obtained as with the total 21000
word vocabulary.

Classification accuracies of both compression approaches are shown Figure 4.2
which supports the two main conclusions: first, using DITC compression mechanism
leads to a compact pyramid representation that reduces the dimensionality of the
original pyramid yet preserves or even improves its performance. Second, compact
pyramid representation based on DITC achieve better results than those based on
AIB approaches at all the vocabulary sizes. Moreover the performance gain is more
significant for smaller vocabularies.

We also perform experiments comparing the performance of DITC compression
with Principle Component Analysis (PCA) and Partial Least Square (PLS) tech-
niques. Figure 4.3 shows the comparison on two data sets. We only show the per-
formance for very compact pyramid representations, since PLS is known to obtain
better results for compact representation and quickly deteriorates for larger repre-
sentation. Moreover, the number of dimensions of PCA is bounded by the number of
observations. DITC based pyramid compression consistently outperforms the other
two compression technqiues. It is worthy to mention that DITC also provides better
performance compared to both PCA and PLS with a very small compact pyramid
representations (50 bins).

The performance difference between DITC and AIB becomes especially appar-
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Figure 4.2: Sports Events data set (left) and 15 class Scenes data set (right)
classification accuracy for compressing the whole pyramid representation leading
to a more compact pyramid representation using the two compression approaches
considered namely: DITC vs. AIB.

Figure 4.3: Sports Events data set (left) and 15 class Scenes data set (right) clas-
sification accuracy for compressing the whole pyramid to a compact representation
using approaches namely: DITC, PLS and PCA. Note that DITC based compres-
sion also provides superior performance for very compact pyramid representations.
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plane bike bird boat bottle bus car cat chair cow table

Pyramid 72.1 54.9 41.9 62.6 23.9 46.3 71.4 51.4 48.8 37.4 46.8

AIB 53.2 28.3 24.6 43.2 11.4 27.5 54.2 29.9 35.6 11.1 13.9

DITC 61.4 50.6 36.5 49.1 20.3 43.9 68.2 44.1 47.1 29.7 38.8

dog horse mbike person plant sheep sofa train tv mean

Pyramid 38.9 72.1 58.1 80.3 25.4 32.4 41 70.5 43.6 50.9

AIB 21.1 41.3 32.3 73.3 10.4 13.9 27.9 40.2 27.8 31.1

DITC 33.4 69.5 53.6 78.9 23.6 22.9 37.6 64.3 42.3 45.8

Table 4.3: Average-Precision Results for all classes of the PASCAL VOC 2007
database. Comparison on the average accuracy of the original four level pyramid
representation of size 25500 compressed to size 200. The second row shows the
compression results using the AIB [22] and the third row shows the results using
DITC [13].

ent for high compression. An initial pyramid representation of the PASCAL dataset
of 25500 words is compressed to 200 clusters. Table 4.3 shows a 14% higher Mean
Average-Precision for having compact pyramid representations based on DITC com-
pared to those obtained using AIB on object recognition.

4.3.3 Compact Pyramid Designs

As demonstrated in the last section, we can significantly reduce the dimensionality
while preserving or even improving the performance of the original pyramid repre-
sentation that we started with. We next evaluate and compare two different design
strategies for building our final compact pyramid representations. The main aim is
to find an optimal design for obtaining compact yet efficient pyramids based on the
DITC compression algorithm. The two proposed designs are the following:

1. Compute a vocabulary, compress it using DITC and subsequently build a
compact pyramid representation based on the compressed compact vocabulary
(the traditionally used schema, denoted as CompPyr hereafter).

2. Construct the pyramid representation for an image and subsequently compress
the vocabulary of the whole pyramid directly using DITC (strategy presented
in Section 4.3.1 and denoted as PyrComp hereafter).

Table 4.4 shows the results obtained using both of the considered proposed de-
signs on 15 class Scenes and the Sports Events datasets. To compare the classifica-
tion scores obtained from the two designs, we consider the same dimensionality of
size 1000. For the 15 class Scenes data set, using CompPyr we got a score of 82.1%,
while PyrComp gives us a performance of 84.4%. For the Sports Events data set,
we observe a similar gain in the obtained results.
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Method Level Size Sports Events 15 Scenes

Pyramid 2 21000 83.8 84.1

PyramidAIB 2 1000 79.8 80.4

CompPyr 2 1000 81.9 82.1

PyrComp 2 1000 85.6 84.4

Table 4.4: Classification score on the Sports Events and 15 class Scenes datasets
using the DITC approach comparing the two proposed designs: CompPyr (com-
pute a vocabulary, compress it, and then build a compact pyramid representation
using this compressed compact vocabulary) and PyrComp (i.e. construct a pyra-
mid representation for an image, then compress the words of the whole pyramid
afterwards).

Figure 4.4: Classification comparison between PyrComp and CompPyr strategies
for (left) 15 class Scenes and (right) Sports Events datasets.

These quantitative results suggest how optimal compact pyramid representations
can be built: although both designs preserve the accuracy of the original pyramid
representation, the best results are obtained following the PyrComp strategy, since
it does not only preserve the original pyramid performance, but slightly improves
performance. Additionally Figure 4.4 illustrates another interesting conclusion: the
gain in performance using PyrComp is obtained throughout all sizes, and this gain
is more significant at lower sizes.

The CompPyr compresses the vocabulary while ignoring the spatial pyramid im-
age representation to which it will later be applied. This strategy is used by most
existing methods for compact vocabulary construction [45,54,108]. Our experiment
show that compressing the vocabulary within the spatial pyramid, significantly im-
proves results. Compression with PyrComp has the same freedom as CompPyr to
merge words within a sub-window. Additionally, it can also merge words of different
sub-windows, something which is impossible within the CompPyr strategy.
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4.4 Combining Multiple Features in Spatial Pyra-

mids

In the previous section, we have provided an efficient method for the construction
of compact pyramid representations. The gained compactness allows us to combine
more features at the same memory usage of the image representation. Here we
analyze how to optimally combine multiple features in a pyramid representation.

We will look at the particular case of combining color and shape, which was shown
to provide excellent results for object and scene recognition [19]. In particular we
investigate two approaches to combine multiple features, namely the early and late
fusion schemes. In the next section we provide results from combining visual cues
other than color and shape.

4.4.1 Early and Late Fusion Spatial Pyramid Matching

In early fusion the local features of color and shape are concatenated into a single
feature. Subsequently, the combined color and shape features are quantized into a
joint shape-color vocabulary. In general, early fusion results in vocabularies with
high discriminative power, since the visual-words describe both color and shape
jointly, allowing for the description of blue corners, red blobs, etc. A significant
shortcoming of early fusion approach is that it deteriorates for categories which vary
significantly over one of the visual cues. For example, man made categories such
as cars and chairs which vary considerably in color. In such cases, the visual-words
will be contaminated by the ”irrelevant” color information. The relevant shape
words will be spread over multiple visual-words, thereby complicating the task of
the learning algorithm significantly. On the other hand, early fusion is suitable
for categories which are constant over both color and shape cues like plants, lions,
road-side signs etc.

The second approach, called late fusion, fuses the two cues, color and shape, by
processing the two features independent of each other. Separate visual vocabularies
are constructed for color and shape independently, and the image is represented
as a distribution over shape-words and color-words. A significant drawback of late
fusion is that we can no longer be certain that both visual cues come from the same
location in an image. Late fusion is expected to provide better results over early
fusion on categories where one cue is constant and the other varies considerably.
Example of such categories are man made objects such as car, buses and chairs etc.

Typically within the bag-of-words framework a number of local features f cmn,
m=1...Mn are extracted from training images In. Where n = 1, 2, ..., N , and
c ∈ {1, 2} is an index indicating the different visual features. In case of early fusion,
two visual features are concatenated according to :

f 1&2
mn =

(
β f 1

mn, (1− β)f 2
mn

)
(4.8)
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Vector quantization of f 1, f 2, f 1&2 yields the corresponding vocabularies V1, V2,
V1&2. We define hV (I) to be the histogram representation of image I in vocabulary
V . Early fusion representation of the image is given by hV1&2(I) and the late fusion
is obtained by concatenating the separate histograms:

h(V1,V2)(I) =
[
β hV1(I), (1− β) hV2(I)

]
(4.9)

Note that we have introduced a weight parameter β for both early and late fusion
which allows us to leverage the relative weight of the various cues. In our setting
this parameter is learned through cross-validation on the training data. Both fusion
schemes can easily be extended to accommodate several visual cues.

Before applying the two schemes on spatial pyramids, we will shortly discuss the
relation of existing approaches for the combination of multiple features to early and
late fusion. Bosch et al. [7] computes the SIFT descriptor on the H,S,V channels and
then concatenates the final descriptor into a single representation. Van de Weijer
and Schmid [87] compare photometrically invariant representations in combination
with SIFT for object recognition. Recently, Van de Sande et al. [86] performed a
study on the photometric properties of many color descriptors, and did an extensive
performance evaluation. In their evaluation OpponentSIFT was shown to be the
best choice to combine color and shape features. Since in all these works color and
shape are combined before vocabulary construction, they are considered early fusion
methods.

Regarding late fusion, several methods explore the combination of multiple fea-
tures at the classification stage. These approaches, of which multiple kernel learning
MKL is the most well-known, [2, 6, 25, 74, 91] combine kernel combinations of dif-
ferent visual features. A weighted linear combination of kernels is employed, where
each feature is represented by multiple kernels. Beside the multiple kernel learning
approach, the two conventional approaches that combine different kernels at the
classification stage in a specified deterministic way are averaging and multiplying
the different kernel responses. Surprisingly, the product of different kernel responses
is shown to provide similar or even better results than MKL in a recent study per-
formed by Gehler and Nowozin [26]. These approaches are considered as late fusion
since they perform vocabulary construction separately for the different features. Re-
cently, an alternative method for combining color and shape, called color attention,
was proposed by Khan et al. [39]. However, it is unclear how this method can be
extended to incorporate spatial pyramids, since the normalization performed in the
sub-regions of the pyramid counters the color attention weighting.

For the standard bag-of-features image representation there is no consensus
whether early or late fusion is better. Here we investigate the two approaches in the
context of spatial pyramids. The common methodology employed in current object
recognition frameworks is to build spatial pyramids of early fusion based schemes
(such as Opp-SIFT, C-SIFT, HSV-SIFT etc.) [7, 86, 87]. We refer to these spatial
pyramids that are based on early fusion scheme as early fusion spatial pyramids and
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Figure 4.5: Early and Late fusion pyramid schemes. In the early fusion pyramid
scheme a combined color-shape vocabulary is constructed as a result of which a
single pyramid representation is obtained. To construct a late fusion pyramid, a
separate vocabulary is constructed for color and shape and spatial pyramids are
obtained for each cue. We show that late fusion is the recommended approach for
combining multiple features.

the spatial pyramids that are based on late fusion as a late fusion spatial pyramids.
Figure 4.5 highlights the two spatial pyramid matching approaches.

4.4.2 Experimental Results of Early and Late Fusion based
Spatial Pyramids

To evaluate both early and late fusion spatial pyramids, we perform an experiment
for both object and scene recognition. For scene classification, the experiments are
performed on Sports Events data set. We use the Butterflies data set for the object
recognition task. To construct a shape vocabulary we use the SIFT descriptor and
the Color Names descriptor [89] for creating a color vocabulary. We combine the
two cues based on early fusion and late fusion schemes, both at the standard bag-of-
words level and at the spatial pyramids level. To obtain a fair comparison between
early and late fusion we use the two standard implementations as given by Eqs.
(4.8) and (4.9). The parameter β in both equations is learned by cross-validation.

We also compare with OpponentSIFT which was shown to be the best color-
shape descriptor in a recent evaluation [86]. Table 4.5 shows the results obtained on
Sports Events data set. For this data set, shape is an important cue and color plays
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Method Level Size Score

Shape 0 800 80.6

Color 0 300 53.9

Opp− SIFT 0 1100 82.9

EarlyFusion 0 1100 80.6

LateFusion 0 1100 81.8

Opp− SIFT 1 5500 82.3

EarlyFusion 1 5500 80.8

LateFusion 1 5500 82.7

Opp− SIFT 2 23100 80.8

Earlyfusion 2 23100 82.7

Latefusion 2 23100 84.4

Table 4.5: Classification Score (percentage) on Sports Events Data set.

a subordinate role. At the standard bag-of-words level, OpponentSIFT provides
the best results but as we move into higher levels of spatial pyramids the perfor-
mance of both early fusion and OpponentSIFT starts to degrade (the performance
of OpponentSIFT at finest pyramid level is below its performance at the standard
bag-of-words level). We also combined color and shape at the kernel level with the
product rule as advocated by Gehler [26]. However, results were found to be inferior
compared to the late fusion spatial pyramid scheme.

Table 4.6 shows the results obtained on Butterflies data set. Shape plays an
important role as depicted from the results of individual visual cues. Late fusion
provides better results at the standard bag-of-words level than both early fusion
and OpponentSIFT. The performance gain of late fusion is further increasing when
more pyramid levels are considered.

In conclusion, in a standard bag-of-words representation both early and late
fusion obtain comparative results. However, our experiments show that within a
spatial pyramid representation late fusion significantly outperforms early fusion.
These results of late fusion could further be improved by applying multi-kernel
learning.

4.5 Comparison to State-of-the-Art

In the previous section we have investigated how to optimally compute compact
and multi-feature spatial pyramids. We have shown that optimal results are ob-
tained by using DITC algorithm for compression, and using the PyrComp strategy
for the computation of compact pyramids. Furthermore, as demonstrated in the
previous section, late fusion pyramids is shown to be more efficient than early fu-
sion pyramids. In this section, we combine these conclusions to construct compact
multi-feature spatial pyramids. First we compute compact spatial pyramids for each
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Method Level Size Score

Shape 0 1000 79.4

Color 0 300 53.3

Opp− SIFT 0 1500 78.7

EarlyFusion 0 1500 79.6

LateFusion 0 1300 81.9

Opp− SIFT 1 7500 79.6

EarlyFusion 1 7500 81.7

LateFusion 1 6500 84.4

Opp− SIFT 2 31500 81.0

Earlyfusion 2 31500 83.3

Latefusion 2 27300 87.9

Table 4.6: Classification Score (percentage) on Butterflies Data set.

Data Sets Best Score PS PSC PSC + PCC + PSSC

Size Score Size Score Size Score Size Score

Sports 6K 84.2 [105] 21K 83.8 1K 85.6 2K 87.1

15 Scenes 21K 84.3 [8] 21K 84.1 1K 84.4 2K 86.7

Butterflies 2K 90.6 [44] 21K 89.5 1K 89.0 2K 91.4

Pascal 2007 160K 60.5 [86] 84K 57.4 15K 57.2 25K 59.5

Pascal 2009 4194K 64.6 [109] 84K 55.7 15K 55.2 25K 57.6

Table 4.7: Classification Score (percentage) on Sports Events, 15 class Scenes,
Butterflies, Pascal VOC 2007 and 2009 Data sets.

feature separately and then combine them in a late fusion manner.

We denote our pyramid representation for SIFT with PS, and the compact
pyramids of SIFT, SelfSimilarity and Color with PSC ,PSSC and PCC respectively.
We report the final results on all the four challenging data sets obtaining very good
classification scores even when reducing the pyramid histograms significantly. In
addition, we compare our results with several recent results reported on these data
sets in literature. Table 4.7 shows our final results and a comparison with the best
results reported on the four data sets.

For the Sports Events data set experiments are repeated five times by split-
ting the data set into train and test set and the mean average accuracy is reported.
As depicted from the results, each feature’s compact representation preserves or even
improves the performance over its original pyramid histogram. The original three
level pyramid representation of SIFT (PSIFT) with dimensionality 21000 gives accu-
racy of 83.8 while, compressing it to 1000 we improve the score to 85.6. By combining
the three compact pyramid representations we obtained a classification score of 87.1
which exceeds the state-of-the-art results obtained on this data set [8, 98, 105–107].
The final accuracy is obtained with our compact histogram of dimensionality 2000
reduced from the original pyramid histograms of dimensionality 42000.
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For the 15 category Scenes data set, we followed the standard protocol of
splitting the data set in to training and testing 5 times and reported the mean
classification score. The results of each feature compact pyramid representation
preserves or even improves the performance of its original pyramid representation.
The original three level pyramid structure of SIFT (PS) with dimensionality 21000
gives accuracy of 84.1 while, compressing it to 1000 we improve the score further to
84.4. Since there is no color in this data set, we only combine the compact pyramids
obtained from SIFT and SelfSimilarity. Our final compact representation has a his-
togram of size 2000 reduced from original pyramid histograms having dimensionality
of 42000. We obtained a classification accuracy of 86.7 which is to the best of our
knowledge the best performance on this data set [8, 98,105–107].

The Butterflies data set shows our approach on a object recognition data set.
Our compact pyramid representation of SIFT provides comparable results w.r.t.
the original pyramids of SIFT. Our final combination yields a score of 91.4 which
outperforms the best reported result in [44].

The results on the Pascal VOC 2007 show we reduce the pyramid histogram
of SIFT to one third with a small loss. The final mean average precision of 59.5 is
obtained with a histogram size of 25K. Our final results are close to state-of-the-
art, but we have significantly reduced the histogram dimension (25K) compared
to the approach of Van de Sande [86], where SIFT pyramids are combined with
4 ColorSIFT pyramids, leading to higher histogram dimensions of 160K. Lastly,
it should be noted that better results (63.5) were reported in [30], where authors
include additional information of object bounding boxes from object detection to
improve image classification.

For the Pascal VOC 2009, similar behavior is noticed. Hence, with an original
SIFT pyramid of size 84K a mean average score of 55.7 is obtained. However, we
maintained a score of 55.2 using our 15K compact SIFT representation. Finally,
the results for multiple features fusion improve the overall mean average score up to
57.6 over the compact SIFT features.

4.6 Conclusions

A major drawback of spatial pyramids is the high dimensionality of their image rep-
resentation. We have proposed a method for the computation of compact discrimi-
native pyramids. The method is based on the divisive information theoretic feature
clustering algorithm, which clusters words based on their discriminative power. We
show that this method outperforms clustering based on the agglomerative informa-
tion bottleneck both in accuracy and in computational complexity. Results show
that depending on the data set dimensionality reductions up to an order of mag-
nitude are feasible without a drop in performance. The gained compactness leaves
more room for the combination of features. We investigate the optimal strategy to
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combine multiple features in a spatial pyramid setting. Especially for higher level
pyramids late fusion was found to significantly outperform early fusion pyramids.
We evaluated the proposed framework on both scene and object recognition, and
obtained state-of-the-art results on several benchmark data sets.

For future work we are particularly interested in applying the compact pyra-
mids to the task of bag-of-words based object detection [30, 42]. The application
of bag-of-words based detection has been particularly advanced due to the efficient
sub-window search (ESS) algorithm proposed by Lampert et al. [42]. The usage of
compact discriminative pyramids to this application could help obtain faster detec-
tion methods without loss in accuracy.

Another line of future research includes investigating the application of DITC
to sparse image representation [54, 108], which has been shown excellent results in
recent works in image restoration and face recognition [34, 111]. Although discrim-
inative vocabularies within the context of sparse image representation have been
investigated, these methods still ignore the spatial pyramid for the construction of
discriminative vocabularies, whereas our work shows that compressing the vocabu-
lary within the spatial pyramid significantly improves results. Therefore, we expect
that combining the strengths of both methods will lead to further improvements.
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Chapter 5

Portmanteau Vocabularies for
Multi-Cue Image Representation1

We describe a novel technique for feature combination in the bag-of-words model
of image classification. Our approach builds discriminative compound words from
primitive cues learned independently from training images. Our main observation
is that modeling joint-cue distributions independently is more statistically robust
for typical classification problems than attempting to empirically estimate the de-
pendent, joint-cue distribution directly. We use Information theoretic vocabulary
compression to find discriminative combinations of cues and the resulting vocabulary
of portmanteau2 words is compact, has the cue binding property, and supports in-
dividual weighting of cues in the final image representation. State-of-the-art results
on both the Oxford Flower-102 and Caltech-UCSD Bird-200 datasets demonstrate
the effectiveness of our technique compared to other, significantly more complex
approaches to multi-cue image representation.

5.1 Introduction

Image categorization is the task of classifying an image as containing an objects
from a predefined list of categories. One of the most successful approaches to this
problem is the bag-of-words (BOW) [7, 47]. In the bag-of-words model an image

1Appeared in Twenty-Fifth Annual Conference on Neural Information Processing Systems
(NIPS 2011) [38].

2A portmanteau is a combination of two or more words to form a neologism that communicates
a concept better than any individual word (e.g. Ski resort + Konference = Skonference). We
use the term to describe our vocabularies to emphasize the connotation with combining color and
shape words into new, more meaningful representations.

67
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is first represented by a collection of local image features detected either sparsely
or in a regular, dense grid. Each local feature is then represented by one or more
cues, each describing one aspect of a small region around the corresponding feature.
Typical local cues include color, shape, and texture. These cues are then quantized
into visual words and the final image representation is a histogram over these visual
vocabularies. In the final stage of the BOW approach the histogram representations
are sent to a classifier.

The success of BOW is highly dependent on the quality of the visual vocabulary.
In this chapter we investigate visual vocabularies which are used to represent im-
ages whose local features are described by both shape and color. To extend BOW to
multiple cues, two properties are especially important: cue binding and cue weight-
ing. A visual vocabulary is said to have the binding property when two independent
cues appearing at the same location in an image remain coupled in the final image
representation. For example, if every local patch in an image is independently de-
scribed by a shape word and a color word, in the final image representation using
compound words the binding property ensures that shape and color words coming
from the same feature location are coupled in the final representation. The term
binding is borrowed from the neuroscience field where it is used to describe the
way in which humans select and integrate the separate cues of objects in the correct
combinations in order to accurately recognize them [82]. The property of cue weight-
ing implies that it is possible to adapt the relevance of each cue depending on the
dataset. The importance of cue weighting can be seen from the success of Multiple
Kernel Learning (MKL) techniques where weights for each cue are automatically
learned [3, 9, 63,74,91,92].

Traditionally, two approaches exist to handle multiple cues in BOW. When each
cue has its own visual vocabulary the result is known as a late fusion image repre-
sentation in which an image is represented as one histogram over shape-words and
another histogram over color-words. Such a representation does not have the cue
binding property, meaning that it is impossible to know exactly which color-shape
events co-occurred at local features. Late fusion does, however, allow cue weight-
ing. Another approach, called early fusion, constructs a single visual vocabulary
of joint color-shape words. Representations over early fusion vocabularies have the
cue binding property, meaning that the spatial co-occurrence of shape and color
events is preserved. However, cue weighting in early fusion vocabularies is very
cumbersome since must be performed before vocabulary construction making cross-
validation very expensive. Recently, Khan et al. [39] proposed a method which
combines cue binding and weighting. However, their final image representation size
is equal to number of vocabulary words times the number of classes, and is therefore
not feasible for the large data sets considered in this chapter.

A straightforward, if combinatorially inconvenient, approach to ensuring the
binding property is to create a new vocabulary that contains one word for each
combination of original shape and color feature. Considering that each of the origi-
nal shape and color vocabularies may contain thousands of words, the resulting joint
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vocabulary may contain millions. Such large vocabularies are impractical as estimat-
ing joint color-shape statistics is often infeasible due to the difficulty of sampling
from limited training data. Furthermore, with so many parameters the resulting
classifiers are prone to overfitting. Because of this and other problems, this type of
joint feature representation has not been further pursued as a way of ensuring that
image representations have the binding property.

In recent years a number of vocabulary compression techniques have appeared
that derive small, discriminative vocabularies from very large ones [13,22,78]. Most
of these techniques are based on information theoretic clustering algorithms that
attempt to combine words that are equivalently discriminative for the set of object
categories being considered. Because these techniques are guided by the discrimi-
native power of clusters of visual words, estimates of class-conditional visual word
probabilities are essential. These recent developments in vocabulary compression
allow us to reconsider the direct, Cartesian product approach to building compound
vocabularies.

These vocabulary compression techniques have been demonstrated on single-cue
vocabularies with a few tens of thousands of words. Starting from even moderately
sized shape and color vocabularies results in a compound shape-color vocabulary
an order of magnitude larger. In such cases, robust estimates of the underlying
class-conditional joint-cue distributions may be difficult to obtain. We show that
for typical datasets a strong independence assumption about the joint color-shape
distribution leads to more robust estimates of the class-conditional distributions
needed for vocabulary compression. In addition, our estimation technique allows
flexible cue-specific weighting that cannot be easily performed with other cue com-
bination techniques that maintain the binding property.

5.2 Portmanteau vocabularies

In this section we propose a new multi-cue vocabulary construction method that
results in compact vocabularies which possess both the cue binding and the cue
weighting properties described above. Our approach is to build portmanteau vocab-
ularies of discriminative, compound shape and color words chosen from indepen-
dently learned color and shape lexicons. The term portmanteau is used in natural
language for words which are a blend of two other words and which combine their
meaning. We use the term portmanteau to describe these compound terms to em-
phasize the fact that, similarly to the use of neologistic portmanteaux in natural
language to capture complex and compound concepts, we create groups of color and
shape words to describe semantic concepts inadequately described by shape or color
alone.

A simple way to ensure the binding property is by considering a product vo-
cabulary that contains a new word for every combination of shape and color terms.
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Figure 5.1: Comparison of two estimates of the joint cue distribution p(S,C|R) on
two large datasets. The graphs plot the Jenson-Shannon divergence between each
estimate and the true joint distribution as a functions of the number of training
images used to estimate them. The true joint distribution is estimated empirically
over all images in each dataset. Estimation using the independence assumption of
equation (5.2) yields similar or better estimates than their empirical counterparts.

Assume that S = {s1, s2, ..., sM} and C = {c1, c2, ..., cN} represent the visual shape
and color vocabularies, respectively. Then the product vocabulary is given by

W = {w1, w2, ..., wT} = {{si, cj} | 1 ≤ i ≤M, 1 ≤ j ≤ N},

where T = M ×N . We will also use the the notation sm to identify a member from
the set S.

A disadvantage of vocabularies of compound terms constructed by considering
the Cartesian product of all primitive shape and color words is that the total number
of visual words is equal to the number of color words times the number of shape
words, which typically results in hundreds of thousands of elements in the final
vocabulary. This is impractical for two reasons. First, the high dimensionality of
the representation hampers the use of complex classifiers such as SVMs. Second,
insufficient training data often renders robust estimation of parameters very diffi-
cult and the resulting classifiers tend to overfit the training set. Because of these
drawbacks, compound product vocabularies have, to the best of our knowledge, not
been pursued in literature. In the next two subsections we discuss our approach to
overcoming these two drawbacks.

5.2.1 Compact Portmanteau Vocabularies

In recent years, several algorithms for feature clustering have been proposed which
compress large vocabularies into small ones [13,22,78]. To reduce the high-dimensionality
of the product vocabulary, we apply Divisive Information-Theoretic feature Cluster-
ing (DITC) algorithm [13], which was shown to outperform AIB [78]. Furthermore,
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DITC has also been successfully employed to construct compact pyramid represen-
tations [15].

The DITC algorithm is designed to find a fixed number of clusters which minimize
the loss in mutual information between clusters and the class labels of training
samples. In our algorithm, loss in mutual information is measured between original
product vocabulary and the resulting clusters. The algorithm joins words which
have similar discriminative power over the set of classes in the image categorization
problem. This is measured by the probability distributions p (R|wt), where R =
{r1, r2, ..rL} is the set of L classes.

More precisely, the drop in mutual information I between the vocabulary W
and the class labels R when going from the original set of vocabulary words W to
the clustered representation WR = {W1,W2, ...,WJ} (where every Wj represents a
cluster of words from W ) is equal to

I (R;W )− I
(
R;WR

)
=

J∑
j=1

∑
wt∈Wj

p (wt)KL (p (R|wt) || p (R|Wj)), (5.1)

where KL is the Kullback-Leibler divergence between two distributions. Equa-
tion (5.1) states that the drop in mutual information is equal to the prior-weighted
KL-divergence between a word and its assigned cluster. The DITC algorithm mini-
mizes this objective function by alternating computation of the cluster distributions
and assignment of compound visual words to their closest cluster. For more details
on the DITC algorithm we refer to Dhillon et al. [13]. Here we apply the DITC
algorithm to reduce the high-dimensionality of the compound vocabularies. We
call the compact vocabulary which is the output of the DITC algorithm the port-
manteau vocabulary and its words accordingly portmanteau words. The final image
representation p(WR) is a distribution over the portmanteau words.

5.2.2 Joint distribution estimation

In solving the problem of high-dimensionality of the compound vocabularies we
seemingly further complicated the estimation problem. As DITC is based on esti-
mates of the class-conditional distributions p(S,C|R) = p(W |R) over product vocab-
ularies, we have increased the number of parameters to be estimated to M ×N ×L.
This can easily reach millions of parameters for standard image datasets. To solve
this problem we propose to estimate the class conditional distributions by assuming
independence of color and shape, given the class:

p(sm, cn|R) ∝ p(sm|R)p(cn|R). (5.2)

Note that we do not assume independence of the cues themselves, but rather the less
restrictive independence of the cues given the class. Instead of directly estimating
the empirical joint distribution p(S,C|R), we reduce the number of parameters



72 PORTMANTEAU VOCABULARIES

Figure 5.2: The effect of α on DITC clusters. Each of the large boxes contains
100 image patches sampled from one Portmanteau word on the Oxford Flower-102
dataset. Top row: five clusters for α = 0.1. Note how these clusters are relatively
homogeneous in color, while shape varies considerably within each. Middle row:
five clusters sampled for α = 0.5. The clusters show consistency over both color
and shape. Bottom row: five clusters sampled for α = 0.9. Notice how in this case
shape is instead homogeneous within each cluster.

to estimate to (M + N) × L, which in the vocabulary configurations discussed in
this chapter represents a reduction in complexity of two orders of magnitude. As
an additional advantage, we will show in section 5.2.3 that estimating the joint
distribution p(S,C|R) allows us to introduce cue weighting.

To verify the quality of the empirical estimates of equation (5.2) we perform
the following experiment. In figure 5.1 we plot the Jensen-Shannon (JS) divergence
between the empirical joint distribution obtained from the test images and the two
estimates: direct estimation of the empirical joint distribution p(S,C|R) on the
training set, and an approximate estimate made by assuming independence as in
equation (5.2). Results are provided as a function of the number of training im-
ages for two large datasets. A low JS-divergence means a better estimate of the
true joint-cue distribution. The plotted lines show the curves for a color cue vo-
cabulary of 100 words and a shape cue vocabulary of 5,000 words, resulting in a
product vocabulary of 500,000 words. On both datasets we see that the indepen-
dence assumption actually leads to a better or equally good estimate of the joint
distribution. Increasing the number of training samples, or starting with smaller
color and shape vocabularies and hence reducing the number of parameters to esti-
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mate, will improve direct empirical estimates of p(S,C). However, figure 5.1 shows
that for typical vocabulary settings on large datasets the independence assumption
results in equivalently good or better estimates of the joint distribution.

5.2.3 Cue weighting

Constructing the compact portmanteau vocabularies based on the independence as-
sumption significantly reduces the number of parameters to estimate. Furthermore,
as we will see in this section, it allows us to control the relative contribution of color
and shape cues in the final representation.

We introduce a weighting parameter α ∈ [0, 1] in the estimate of p(C, S):

pα(sm, cn|R) ∝ p(sm|R)αp(cn|R)1−α (5.3)

where an α close to zero results in a larger influence of the color words, and a α
close to one leads to a vocabulary which focuses predominantly on shape.

To illustrate the influence of α on the vocabulary construction, we show sam-
ples from portmanteau words obtained on the Oxford Flower-102 dataset (see fig-
ure 5.4) in figure 5.2. The DITC algorithm is applied to reduce the product vo-
cabulary of 500,000 compound words to 100 portmanteau words. For settings of
α ∈ {0.1, 0.5, 0.9} we show five of the hundred words. Each word is represented
by one hundred randomly sampled patches from the dataset which have been as-
signed to the word. The effect of changing the α can be clearly seen. For low α
the Portmanteau words exhibit homogeneity of color but lack within-cluster shape
consistency. On the other hand for high α the words show strong shape homogene-
ity such as low and high frequency lines and blobs, while color is more uniformly
distributed. For a setting of α = 0.5 the clustering is more consistent in both color
and shape.

Additionally, another parameter β is introduced:

pα,β(sm, cn|R) ∝
(
p(sm|R)αp(cn|R)1−α

)β
(5.4)

To illustrate the influence of β consider the following experiment on synthetic data.
We generate a set of 100 words which have random discriminative power p (R|wt)
over L = 10 classes. In figure 5.3 we show the p (R|wt) for a subset of 20 words in
grey, and p (R|Wj) ∝

∑
wt∈Wj

p(wt)p(R|wt) for the ten portmanteau words in color.

We observe that increasing the β parameter directs DITC to find clusters which are
each highly discriminative for a single class, rather than being discriminative over
all classes. We found that higher β values often lead to image representations which
improve classification results.

These weighting parameters are learned through cross validation on the training
set. In practice we found α to change with the data set according to the importance
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Figure 5.3: The effect of β on DITC clusters. For 20 words p (R|wt) is plotted
in dotted grey lines. DITC is used to obtain ten portmanteau means p (R|Wj) are
plotted in different colors. On the left is shown the final clustering for β = 1.0.
Note that none of the portmanteau means are especially discriminative for one
particular class. On the right, however, for β = 5.0 each portmanteau concentrates
on discriminating one class.

of color and shape. The β parameter was found to to be constant at a value 5 for the
two datasets evaluated in this chapter. Both parameters were found to significantly
improve results on both datasets.

5.2.4 Image representation with portmanteau vocabularies

We summarize our approach to constructing portmanteau vocabularies for image
representation. We emphasize the fact that our approach is fundamentally about
deriving compact multi-cue image representations and, as such, can be used as a
drop-in replacement in any bag-of-words pipeline.

Image representation by portmanteau vocabulary built from color and shape cues
follows these steps:

1. Independent color and shape vocabularies are constructed by standard K-
means clustering over color and shape descriptors extracted from training im-
ages.

2. Empirical class-conditional word distributions p(S|R) and p(C|R) are com-
puted from the training set, the joint cue distribution P (S,C|R) is estimated
assuming conditional independence as in equation (5.4).

3. The portmanteau vocabulary is computed with the DITC algorithm. The
output of the DITC is a list of indexes which, for each member of the compound
vocabulary maps to one of the J portmanteau words.
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Figure 5.4: Example images from the two datasets used in our experiments Top:
images from four categories of the Flower-102 dataset. Bottom: four example
images from the Bird-200 dataset.

4. Using the index list output by DITC, the original image features are revisited
and the index corresponding the compound shape-color word at each feature is
used to represent each image as a histogram over the portmanteau vocabulary.

5.3 Experimental results

We follow the standard bag-of-words approach. We use a combination of interest-
point detectors along with a dense multi-scale grid detector. The SIFT descrip-
tor [53] is used to construct a shape vocabulary. For color we use the color name
descriptor, which is computed by converting sRGB values to color names according
to [89] after which each patch is represented as a histogram over the eleven color
names. The shape and color vocabularies are constructed using the standard K-
means algorithm. In all our experiments we use a shape vocabulary of 5000 words
and a color vocabulary of 100 words. Applying Laplace weighting was not found
to influence the results and therefore not used in the experiments. The classifier
is a non-linear, multi-way, one-versus-all SVM using the χ2 kernel [113]. Each test
image is assigned the label of the classifier giving the highest response and the final
classification score is the mean recognition rate per category.

We performed several experiments to validate our approach to building multi-cue
vocabularies by comparing with other methods which are based on exactly the same
initial SIFT and CN descriptors:

• Shape and Color only: a single vocabulary of 5000 SIFT words and one of
100 CN words.

• Early fusion: SIFT and CN are concatenated into single descriptor. The
relative weight of shape and color is optimized by cross-validation. Note that
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cross-validation on cue weighting parameters for early fusion must be done
over the entire BOW pipeline, from vocabulary construction to classification.
Vocabulary size is 5000.

• Direct empirical: DITC based on the empirical distribution of p(S,C|R)
over a total of 500.000 compound words estimated on the training set.

• Independence assumption: where p(S,C|R) = p(S|R)p(C|R) is assumed.
We also show separate results with and without using α and β.

In all cases the color-shape visual vocabularies are compressed to 500 visual words
and spatial pyramids are constructed for the final image representation as in [47]. All
of the above approaches were evaluated on two standard and challenging datasets:
Oxford Flower-102 and Caltech-UCSD Bird-200. The train-test splits are fixed for
both datasets and are provided on their respective websites.3 and the 4

5.3.1 Results on the Flower-102 and Bird-200 datasets

The Oxford Flower-102 dataset contains 8189 images of 102 different flower species.
It is a challenging dataset due to significant scale and illumination changes (see
figure 5.4). The results are presented in table 5.1(a). We see that shape alone yields
results superior to color. Early fusion is reasonably good at 70.5%. This is however
obtained through laborious cross validation to obtain the optimal balance between
CN and SIFT cues. Since our cue weighting is done after the initial vocabulary and
histogram construction, cross-validation is significantly faster than for early fusion.

The bottom three rows of table 5.1(a) give the results of our approach to image
representation with portmanteau vocabularies in a variety of configurations. The
direct empirical estimation of the joint shape-color distribution provides slightly
better results than estimation based on the independence assumption. However,
weighting the two visual cues using the α parameter described in equation (5.3)
in the independent estimation of p(s, c|class) improves the results significantly. In
particular, the gain of almost 7% obtained by adding β is remarkable. The best
recognition performance were obtained for α = 0.8 and β = 5.

The Caltech-UCSD Bird-200 dataset contains 6033 images from 200 different bird
species. This dataset contains many bird species that closely resemble each other
in terms of color and shape cues, making the recognition task extremely difficult.
Table 5.1(a) contains test results for our approach on Bird-200 as well. Interestingly,
on this dataset color outperforms shape alone and early fusion yields only a small
improvement over color. Results based on portmanteau vocabularies outperform
early fusion, and estimation based on the independence assumption provide better
results than direct empirical estimation. These results are further improved by the

3The Flower-102 dataset at http://www.robots.ox.ac.uk/vgg/research/flowers/
4Birds-200 set at http://www.vision.caltech.edu/visipedia/CUB-200.html
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Method Flower Bird
Shape only 60.7 12.9
Color only 48.5 16.8

Early Fusion 70.5 17.0

Direct empirical 64.6 18.9
Independent 63.5 19.8

Independent + α 66.4 21.6
Independent + α + β 73.3 22.4

Method Bird Flower
OpponentSIFT 14.0 69.2

C-SIFT 13.9 65.9
MKL [63] − 72.8
MKL [9] 19.0 −

Random Forest [112] 19.2 −
Saliency [37] − 71.0

Our Approach 22.4 73.3
(a) (b)

Table 5.1: Comparative evaluation of our approach. (a) Classification score on
Flower-102 and Bird-200 datasets for individual features, early fusion and several
configurations of our approach. (b) Comparison of our approach to the state-of-
the-art on the Bird-200 and Flower-102 datasets.

introduction of cue weighting with a final score of 22.4% obtained with α = 0.7 and
β = 5 outperforming all others.

5.3.2 Comparison with the state-of-the-art

Recently, an extensive performance evaluation of color descriptors was presented by
van de Sande et al. [86]. In this evaluation the OpponentSIFT and C-SIFT were
reported to provide superior performance on image categorization problems. We
construct a visual vocabulary of 5000 visual words for both OpponentSIFT and C-
SIFT and apply the DITC algorithm to compress it to 500 visual words. As shown
in table 5.1(b), Our approach provides significantly better results compared to both
OpponentSIFT and C-SIFT, possibly due to the fact neither supports cue weighting.

In recent years, combining multiple cues using Multiple Kernel Learning (MKL)
techniques has received a lot of attention. These approaches combine multiple cues
and multiple kernels and apply per-class cue weighting. Table 5.1(b) includes two
recent MKL techniques that report state-of-the-art performance. The technique
described in [9] is based on geometric blur, grayscale SIFT, color SIFT and full
image color histograms, while the approach in [63] also employs HSV, SIFT int,
SIFT bd, and HOG descriptors in the MKL framework of [91]. Despite the simplicity
of our approach, which is based on only two cues and a single kernel, it outperforms
these complex multi-cue learning techniques. Also note that both MKL approaches
are based on learning class-specific weighting for multiple cues. This is especially
cumbersome when there exist several hundred object categories in a dataset (e.g.
the Bird-200 dataset contains 200 bird categories). In contrast to these approaches,
we learn a global, class-independent cue weighting parameters to balance color and
shape cues.

On the Flower-102 dataset, our final classification score of 73.3% is comparable to
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the state-of-the-art recognition performance [31,37,63]5 obtained on this dataset. It
should be noted that Nilsback and Zisserman [63] obtain a classification performance
of 72.8% using segmented images and a combination of four different visual cues in
a multiple kernel learning framework. Our performance, however, is obtained on
unsegmented images using only color and shape cues. On the Bird-200 dataset, our
approach significantly outperforms state-of-the-art methods [9, 98,112].

5.4 Conclusions

In this chapter we propose a new method to construct multi-cue, visual portmanteau
vocabularies that combine color and shape cues. When constructing a multi-cue
vocabulary two properties are especially desirable: cue binding and cue weighting.
Starting from multi-cue product vocabularies we compress this representation to
form discriminative compound terms, or portmanteaux, used in the final image
representation. Experiments demonstrate that assuming independence of visual cues
given the categories provides a robust estimation of joint-cue distributions compared
to direct empirical estimation. Assuming independence also has the advantage of
both reducing the complexity of the representation by two orders of magnitude
and allowing flexible cue weighting. Our final image representation is compact,
maintains the cue binding property, admits cue weighting and yields state-of-the-
art performance on the image categorization problem.

We tested our approach on two datasets, each with more than one hundred object
categories. Results demonstrate the superiority of our approach over existing ones
combining color and shape cues. We obtain a gain of 2.8% and 5.4% over the early
fusion approach. Our approach also outperforms methods based on multiple cues
and MKL with per-class parameter learning. This leaves open the possibility of
using our approach to multi-cue image representation within an MKL framework.

5From correspondence with the authors of [31] we learned that the results reported in their
paper are erroneous and they do not obtain results better than [63].



Chapter 6

Conclusions and Future Directions

In this thesis, we aim at improving the bag-of-words approach by proposing efficient
image representations to combine multiple cues especially color and shape for object
and scene recognition. In this chapter we summarize the approaches proposed in
this thesis to improve the bag-of-words based object and scene recognition. The
chapter ends with future research directions.

6.1 Conclusions

In this thesis, we have investigated methods to combine color and shape features
within the bag-of-words framework for object recognition. We performed a theoret-
ical analysis of existing approaches to combine color and shape. Early fusion has
the feature binding property and helps for categories which possess constancy over
color and shape cues. Late fusion has the property of feature compactness. This
is especially desirable for object categories where one of the two visual cues varies
significantly. To counter the problems of early and late fusion, we propose a novel
approach to combine color and shape cues in chapter 3.

In the second part of the thesis, we focused on the problem of constructing
discriminative and compact spatial pyramid representations for object and scene
recognition. Spatial pyramid scheme encodes the spatial information missing in the
orderless bag-of-words based representation. The technique works by dividing an
image into increasingly finer sub-regions as a result of which a multi-resolution his-
togram is constructed. Although spatial pyramids provides excellent performance,
the resulting histogram is very high dimensional thereby increasing the classification
time significantly. Furthermore, it is still the unclear how early and late fusion of
color and shape works at the spatial pyramid levels. Therefore in chapter 4, we pro-
pose an approach to construct compact and discriminative spatial pyramids which
preserves the recognition performance while reducing the dimensionality of spatial
pyramids significantly.
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Finally, in the last part of the thesis, we have investigated the problem of com-
bining color and shape cues for data sets with several hundred object categories. We
focused on constructing a compact and discriminative color-shape visual vocabulary.
Early fusion based visual vocabularies are the most common way of constructing a
joint color-shape visual vocabulary. However, weighting the importance of the two
visual cues which is highly desirable is extremely cumbersome in early fusion vocab-
ularies. We propose to construct compound visual words from primitive visual cues
using information theoretic vocabulary compression technique in chapter 5.

The methods proposed and the results obtained in this thesis are summarized in
the paragraphs below:

Chapter 3: Modulating Shape Features by Color Attention for Object
recognition. To counter the problem of early and late feature fusion, we pro-
posed a novel image representation to combine color and shape cues. Our approach
separately processes the shape and color cues and combines them by modulating
the shape features by category-specific color attention. Color is used to compute
bottom-up and top-down attention maps. Subsequently, the color attention maps
are deployed to modulate the weights of the shape features. Shape features are
given more weight in regions of an image that are more likely to contain an ob-
ject instance. We have compared our approach with existing methods that combine
color and shape cues. The results obtained clearly demonstrate that our proposed
approach significantly outperforms existing methods for combining color and shape.

Chapter 4: Discriminative Compact Pyramids for Object and Scene
Recognition. Spatial pyramid scheme has been successfully applied to incorporate
spatial information within the bag-of-words framework. However, a major drawback
is that it leads to high dimensional image representations. By reducing the dimen-
sionality of spatial pyramids can further allow to incorporate multiple cues such as
color and shape for improved recognition. To counter the high dimensionality prob-
lem of spatial pyramids, we have presented a novel framework for obtaining compact
pyramid representation. Firstly, we have investigated the usage of the divisive infor-
mation theoretic feature clustering (DITC) algorithm in creating a compact pyramid
representation. In many scenarios this method is shown to reduce the size of a high
dimensional pyramid representation up to an order of magnitude with little or no
loss in accuracy. Moreover, we have also investigated the optimal combination of
multiple features in the context of our compact pyramid representation. The exper-
iments have showed that our method can obtain state-of-the-art results on several
challenging data sets.

Chapter 5: Portmanteau Vocabularies for Multi-Cue Image Represen-
tation. Although early fusion based visual vocabularies possess the feature binding
property, yet the best results are obtained by weighting the different visual cues.
This parametric weighting is normally done using cross-validation thereby increas-
ing the time complexity of the problem. Late fusion, on the other hand, allows
efficient feature weighting but lacks feature binding. To this end we have described
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a novel technique for feature combination within the bag-of-words model for im-
age classification. Our approach is based on constructing discriminative compound
words from visual cues learned independently from training images. We have used
Information theoretic vocabulary compression to find discriminative combinations
of visual cues and the resulting visual vocabulary is compact, has the cue binding
property, and supports individual weighting of cues in the final image representa-
tion. State-of-the-art results on standard object recognition data sets demonstrate
the effectiveness of our technique compared to other, significantly more complex
approaches to multi-cue image representation.

6.2 Future Directions

Combining color and shape cues using the methods proposed in this thesis has shown
excellent performance for object recognition task. In future, We aim at applying the
image representations proposed in chapter 3 and 5 for object detection and action
recognition task. The problem of combining multiple cues in these applications is
still open to debate. Most of the existing approaches [97, 114] combines multiple
cues such as shape and texture in a late fusion manner for object detection. Late
fusion based approaches suffer when both visual cues are constant. Since both
color attention and portmanteau allows feature binding, it would be interesting to
investigate them for object detection in future.

The approaches presented in chapter 3 and 5 of this paper are shown to combine
color and shape visual cues successfully. However, other visual cues such as texture,
optical flow etc. can also be combined using the mentioned approaches. In recent
works by [48,49] color attention is used to incorporate motion features as an attention
cue for event recognition. Therefore, we aim at extending it for other visual cues
for applications such as object detection and action recognition.

The compact pyramid representation introduced in chapter 4 allows efficient
combination of multiple visual cues. For complex problems, such as large scale
image retrieval and object detection, reducing the computational complexity and
memory usage is of paramount importance. In such applications, compact pyra-
mid representations of multiple visual cues will allow to achieve higher recognition
performance without increasing the complexity. Therefore, we aim at applying the
proposed approach for large scale image classification data sets such as ImageNet.
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