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Abstract
The aim of this work is to explain how to apply perceptual
concepts to define a perceptual pre-quantizer and to improve
JPEG2000 compressor. The approach consists in quantizing
wavelet transform coefficients using some of the human visual
system behavior properties. Noise is fatal to image compres-
sion performance, because it can be both annoying for the
observer and consumes excessive bandwidth when the imagery
is transmitted. Perceptual pre-quantization reduces unper-
ceivable details and thus improve both visual impression and
transmission properties. The comparison between JPEG2000
without and with perceptual pre-quantization shows that the
latter is not favorable in PSNR, but the recovered image is more
compressed at the same or even better visual quality measured
with a weighted PSNR. Perceptual criteria were taken from the
CIWaM (Chromatic Induction Wavelet Model).

Introduction
Digital image compression has been a research topic for

many years and a number of image compression standards
has been created for different applications. The JPEG2000
is intended to provide rate-distortion and subjective image
quality performance superior to existing standards, as well as to
supply functionality [2]. However JPEG2000 does not provide
the most relevant characteristics of the human visual system,
since for removing information in order to compress the image
mainly information theory criteria are applied. This information
removal introduces artifacts to the image that are visible at high
compression rates, because of many pixels with high perceptual
significance have been discarded.

Hence it is necessary an advanced model that removes
information according to perceptual criteria, preserving the
pixels with high perceptual relevance regardless of the numerical
information. The Chromatic Induction Wavelet Model presents
some perceptual concepts that can be suitable for it. Both
CIWaM and JPEG2000 use wavelet transform. CIWaM uses
it in order to generate an approximation to how every pixel
is perceived from a certain distance taking into account the
value of its neighboring pixels. By contrast, JPEG2000 applies
a perceptual criteria for all coefficients in a certain spatial
frequency independently of the values of its surrounding ones.
In other words, JPEG2000 performs a global transformation of
wavelet coefficients, while CIWaM performs a local one.

CIWaM attenuates the details that the human visual system
is not able to perceive, enhances those that are perceptually
relevant and produces an approximation of the image that the
brain visual cortex perceives. At long distances, as Figure
3d depicts, the lack of information does not produce the
well-known compression artifacts, rather it is presented as a
softened version, where the details with high perceptual value
remain (for example, some edges).

This paper is organized as follows: Section JPEG2000
Quantization Overview specifies quantization and dequantiza-
tion model used by JPEG2000 for encoding and reconstruction
of wavelet coefficients, thereby is described the Dead-zone Uni-
form Scalar Quantizer and the Global Visual Frequency Weight-
ing for JPEG2000. Section Chromatic Induction Wavelet Model
describes the Chromatic assimilation/contrast phenomena. In
Section Local Perceptual Weighting, the proposed method of pre-
quantization will be discussed. Experimental results applied for
some test images are given in the next section. The last section
is where the conclusions and future work will be exposed.

JPEG2000 Quantization Overview
Dead-zone Uniform Scalar Quantizer

In 2002, Marcellin et. al. in [5] summarize, among others,
the uniform scalar quantizer. This quantizer is described as a
function that maps each element in a subset of the real line to
a particular value, which ensures that more zeros result. In this
way all thresholds are uniformly spaced by step size ∆, except
for the interval containing zero, which is called the dead-zone
and extends from −∆ to +∆, thus a dead-zone means that the
quantization range about 0 is 2∆.

For each spatial frequency s, a basic quantizer step size ∆s
is used to quantize all the coefficients in that spatial frequency
according to Equation 1.

q = sign(y)
⌊ |y|

∆s

⌋
(1)

where y is the input to the quantizer or original wavelet coeffi-
cient value, sign(y) denotes the sign of y and q is the resulting
quantized index. Figure 1 illustrates such a quantizer with step
size ∆.

Figure 1. Dead-zone uniform scalar quantizer with step size ∆: vertical

lines indicate the endpoints of the quantization intervals and heavy dots

represent reconstruction values.

The inverse quantizer or the reconstructed ŷ is given by the
Equation 2, wherein δ is a parameter often set to place the re-
construction value at the centroid of the quantization interval and
varies form 0 to 1.

ŷ =





(q+δ )∆s, q > 0
(q−δ )∆s, q < 0
0, q = 0

(2)

The International Organization for Standardization recom-
mends in [2] to adopt the mid-point reconstruction value, setting
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δ = 0.5. Experience indicates that some small improvements can
be obtained by selecting a slightly smaller value, as Pearlman
and Said suggest [9] δ = 0.375, especially for higher frequency
subbands. It is important to realize that when −∆ < y < ∆, the
quantizer level and reconstruction value are both 0. For a spa-
tial frequency, there may be many coefficients usually those of
higher frequencies, that are set to 0. The array of quantizer levels
q is further encoded losslessly.

JPEG2000 Global Visual Frequency Weighting
In JPEG2000, only one set of weights is chosen and

applied to wavelet coefficients according to a particular viewing
condition (100, 200 or 400 dpi’s) with fixed visual weighting.
This viewing condition may be truncated depending on the
stages of embedding, in other words at low bit rates, the quality
of the compressed image is poor and the detailed features of the
image are not available since at a relatively large distance the
low frequencies are perceptually more important.

The table 1 specifies a set of weights which was designed
for the luminance component based on the Contrast Sensitivity
Function (CSF) value at the mid-frequency of each spatial fre-
quency. The viewing distance is supposed to be 4000 pixels, cor-
responding to 10 inches for 400 dpi print or display. The weight
for LL is not included in the table, because it is always 1. Levels
1, 2, . . . , 5 denote the spatial frequency levels in low to high fre-
quency order with three spatial orientations, horizontal, vertical
and diagonal.

Recommended JPEG2000 frequency weighting for 400 dpi’s

s horizontal vertical diagonal
1 1 1 1
2 1 1 0.731 668
3 0.564 344 0.564 344 0.285 968
4 0.179 609 0.179 609 0.043 903
5 0.014 774 0.014 774 0.000 573

Chromatic Induction Wavelet Model
In order to explain the Chromatic assimilation/contrast

phenomena as a unique perceptual process, Otazu et al. propose
in [7] a low-level Chromatic induction model , which combines
three important stimulus properties: spatial frequency, spatial
orientation and surround contrast.

Thereby the input image I is separated into differ-
ent spatial frequency and orientation components using a
multiresolution wavelet decomposition. Thus every single
transformed coefficient is weighted using the response of the
extended contrast sensitivity function (e-CSF, Figure 2), hence
a perceptual Chromatic image Iρ is recovered. The e-CSF is
an extension of the perceptual CSF considering both spatial
surround information and observation distance. Particulary the
e-CSF value decreases when the surround contrast increases and
vice versa.

Image I can be decomposed into a set of wavelet planes ω
of different spatial frequencies, where each wavelet plane con-
tains details at different spatial resolutions and it is described by:

I =
n

∑
s=1

∑
o=v,h,d

ωo
s + cn (3)

where n is the number of wavelet planes. The term cn is the
residual plane and the index o represents the spatial orientation
either vertical, horizontal or diagonal.

The perceptual image Iρ recovered from the wavelet planes
can be written as:

Iρ =
n

∑
s=1

∑
o=v,h,d

C′ (ṡ,zctr (s,o)) ·ωo
s + cn. (4)

The term C′ (ṡ,zctr (s,o)) is the e-CSF weighting function,
that tries to emulate some perceptual properties of human visual
system, as described in [8], has a shape similar to the CSF and
can be written as:

C′ (ṡ,zctr (s,o)) = zctr ·Cd(ṡ)+Cmin(ṡ) (5)

where zctr is a non-linear function and an estimation of the cen-
tral feature contrast relative to its surround contrast. Its range
oscillates from zero to one and is defined by:

zctr =

[
σcen
σsur

]2

1+
[

σcen
σsur

]2 (6)

being σcen and σsur the standard deviation of the wavelet
coefficients in two concentric rings, which represent a
center−surround interaction around each coefficient.

The weighting function Cd(ṡ) is an approximation to the
perceptual CSF, emulates some perceptual properties and is de-
fined as a piecewise Gaussian function [6], such as:

Cd(ṡ) =





e
− ṡ2

2σ2
1 , ṡ = s− sthr ≤ 0,

e
− ṡ2

2σ2
2 , ṡ = s− sthr > 0.

(7)

The term Cmin(ṡ) avoids the C′ (ṡ,zctr (s,o)) function to be
zero and is defined by:

Cmin(ṡ) =

{
1
2 e

− ṡ2

2σ2
1 , ṡ = s− sthr ≤ 0,

1
2 , ṡ = s− sthr > 0.

(8)

Figure 2. Continuous function: extended contrast sensitivity function.

Dashed function: profile of e-CSF C′ (ṡ,zctr (s,o)) with zctr (x,y;s,o) = 0.75.

Dashed-dotted function: profile of Cmin(ṡ). Dotted line: values above this

value implies brightness contrast, and values below it implies brightness

assimilation.
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taking σ1 = 2 and σ2 = 2σ1. Both Cmin(ṡ) and Cd(ṡ) depend
on the factor sthr, which is the scale associated to 4cpd when an
image is observed from a distance d with a pixel size lp and one
visual degree, whose expression is defined by Equation 9.

sthr = log2

(
d tan(1◦)

4 lp

)
(9)

This sthr value is associated to the CSF maximum value.
Figure 3 shows three CIWaM images of Lena, which are calcu-
lated by Equation 4 for a 19 inch monitor with 1280 pixels of
horizontal resolution, at 30, 100 and 200 centimeters of distance.

Figure 3. Perceptual color images of Lena performed by CIWaM. The lack

of information does not produce compression artifacts, rather it is presented

as a softened version.

(a) Original (b) 30 cm.

(c) 100 cm. (d) 200 cm.

Perceptual Local Weighting
In order to compare the JPEG2000 effectiveness and to get

each bit-plane, some transformed coefficients of the Original Im-
age or Iorg are selected such that Iorg ≥ 2thr−bpl+1, where bpl
is the desired bit-plane and thr is the maximum threshold of
Iorg, expressed as follows:

thr =
⌊

log2

(
max
(i, j)

{∣∣∣Iorg(i, j)

∣∣∣
})⌋

(10)

Figure 4 depicts this process, which is applied for the three
components of a opponent color space, i.e. Intensity, Red-Green
and Blue-Yellow, thus this selected coefficients are inverse
transformed in order to create a new Source of Image Data and
to separate the original one in bit-planes.

The modification of JPEG2000 core is illustrated in the
block diagram of Figure 5. To obtain wavelet coefficients of I
a Forward Transformation with the 9/7 filter fast wavelet trans-
form is first applied on the source image data. Then, the percep-
tual quantized coefficients Q, calculated from a known viewing

distance d as follows:

Q =
n

∑
s=1

∑
o=v,h,d

sign(ωo
s )

⌊ |C′ (ṡ,zctr (s,o)) ·ωo
s |

∆s

⌋
+

⌊
cn

∆n

⌋
(11)

This expression is similar to Equation 1, but introduces
perceptual criteria to each coefficient contrary to the classical
Global Visual Frequency Weighting. A normalized quantization
step size ∆ = 1/128 is used, namely the range between the
minimal and maximal values at Iρ is divided into 128 intervals.
Finally, the perceptual quantized coefficients are entropy coded,
before forming the output code stream or bitstream.

Figure 4. Bit-plane selection. Some coefficients are selected provided that

they fulfil the current threshold.

Figure 5. General block diagram of JPEG2000 compression, applying be-

tween Transformation and Quantization steps a perceptual local weighting

function into the wavelet coefficients.

At the decoder, the code stream is, first, entropy decoded
in order to reconstruct the perceptual quantized coefficients Q̂,
second, dequantized using Equation 2 with a normalized quan-
tization step size ∆ = 1/128 and δ = 3/8. Finally, an inverse
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discrete wavelet transform is applied to recover Îρ , thus pro-
viding the reconstructed perceived image data.

Experimental Results
The software used to obtain a JPEG2000 compression for

the experiments was JJ2000, developed by Cannon Research,
École Polytechnique Fédérale de Lausanne and Ericsson,
available at http://jj2000.epfl.ch.

The Perceptual Local Weighting in JPEG2000 was tested
on all the color images of the Miscellaneous volume of the Uni-
versity of Southern California Image Data Base, available at
http://sipi.usc.edu/database/. The data sets were eight 256×256
pixel images (Figure 6) and eight 512× 512 pixel images (Fig-
ure 7), but only visual results of the well-known images Lena, F-
16 and Baboon are depicted, which are 24-bit color images and
512×512 of resolution. The CIWaM images were calculated for
a 19 inch monitor with 1280 pixels of horizontal resolution at 50
centimeters of viewing distance.

Figure 6. Tested 256 x 256 pixel 24-bit Color Images, obtained from the

University of Southern California Image Data Base.

Figure 7. Tested 512 x 512 pixel 24-bit Color Images, obtained from the

University of Southern California Image Data Base.

The Peak Signal to Noise Ratio or PSNR [4] between the
original image f (i, j) and the reconstructed image f̂ (i, j) was de-
veloped to calculate objectively the degradations introduced into
the compression process. PSNR is a function of the Mean Square
Error (MSE) and is defined as:

PSNR = 10log10

(
Gmax

2

MSE

)
(12)

Figure 8. JPEG2000 Compression ratio by Bit-plane. Continuous function

with heavy dots: JPEG2000 only quantized by the dead-zone uniform scalar

manner. Continuous function with heavy stars: JPEG2000 pre-quantized by

the chromatic induction wavelet model, in addition to a dead-zone uniform

scalar quantification.

where Gmax is the maximum possible intensity value in f (i, j)
(M×N size) and the MSE has the form:

MSE =
1

NM

N

∑
i=1

M

∑
j=1

[
f (i, j)− f̂ (i, j)

]2 (13)

However PSNR does not calculate perceptual quality mea-
sures. Therefore, it is necessary to weight each PSNR term by
means of its local activity factor, taking into account the local
variance of the neighbors of the studied wavelet coefficients, thus
defining a weighted PSNR or wPSNR [1, 3]. The wPSNR in-
creases with increasing variance and vice versa as:

wPSNR = 10log10

(
Gmax

2

wMSE

)
(14)

where the weighted MSE (wMSE) is defined as:

wMSE =
1

NM

N

∑
i=1

M

∑
j=1

[
f (i, j)− f̂ (i, j)
1+Var(i, j)

]2

(15)

Figure 8 shows the assessment results of the average per-
formance of color image compression for each bit-plane using
a Dead-zone Uniform Scalar Quantizer (continuous function
with heavy dots), and adding to it a previous quantization step
developed by CIWaM (continuous function with heavy stars).

CIWaM used as a method of pre-quantization, achieves
better compression ratios with the same threshold, reaching
better results at the highest bit-planes, since CIWaM reduces
unperceivable coefficients. Figure 9 shows the contribution of
CIWaM in the JPEG2000 compression ratio, for example at
the eighth bit-plane, CIWaM diminishes 1.2423 bits per pixel
less than without it, namely in a 512× 512 pixel color image,
CIWaM estimates that 39.75KB of information is perceptually
irrelevant at 50 centimeters.

The comparison between compression ratio and image
quality is depicted by the Figure 10, which shows that the recon-
structed images pre-quantized by CIWaM (continuous function

258 ©2010 Society for Imaging Science and Technology



Figure 9. Contribution of a CIWaM pre-quantification over the JPEG2000

compression ratio by each Bit-plane.

with heavy stars) has less PSNR but higher wPSNR (continuous
function with heavy asterisks) than the ones quantized just by
a scalar way (continuous function with heavy dots), i.e. even if
the reconstructed image has a lower objective quality, this image
could have a higher perceptual quality.

Figure 10. Comparison between compression ratio and image quality.

Continuous function with heavy stars: objective quality when a CIWaM pre-

quantification and a dead-zone uniform scalar quantification are used. Con-

tinuous function with heavy dots: objective quality only quantizing with the

dead-zone uniform scalar method. Continuous function with heavy aster-

isks: subjective quality when jointly a CIWaM pre-quantification and a dead-

zone uniform scalar quantification are performed.

Both Figure 11 and 12 depict examples of reconstructed
images compressed at 0.9 and 0.4 bits per pixel, respectively,
by means of JPEG2000 without (a) and with perceptual pre-
quantization (b). Also this figures demonstrate that the CIWaM
subjective quality is higher than the objective one.

The Figure 13 shows examples of reconstructed images
of Baboon compressed at 0.59, 0.54 and 0.45 bits per pixel
by means of JPEG2000 without (a) and with perceptual pre-

quantization (b and c). PSNR in 13a is 26.18dB and in 13b
is 26.15dB but wPSNR is equal to 34.08 decibels, namely the
reconstructed image pre-quantized by CIWaM is perceptually
better than the one just quantized by a Scalar Quantizer, since
the latter has more compression artifacts, even the result at

Figure 11. Examples of reconstructed images of Lena compressed at 0.9

bpp.

(a) JPEG2000 31.19dB.

(b) JPEG2000-CIWaM 27.57dB.

Figure 12. Examples of reconstructed images of F-16 compressed at 0.4

bpp.

(a) JPEG2000 25.12dB.

(b) JPEG2000-CIWaM 24.57dB.
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0.45bpp (Figure 13c) has less artifacts, showing for example
that the Baboon’s eye is softer and better defined and saving
additionally 4.48KB of information.

Figure 13. Examples of reconstructed images of Baboon.

(a) JPEG2000 compressed at 0.59 bpp.

(b) JPEG2000-CIWaM compressed at 0.54 bpp.

(c) JPEG2000-CIWaM compressed at 0.45 bpp.

Conclusions and Future Work
This work proposes the incorporation of a pre-quantization

step to JPEG2000 using CIWaM. In order to measure the effec-
tiveness of the perceptual quantization a performance analysis
is done using the PSNR and wPSNR measured between recon-
structed and original images. Unlike PSNR, wPSNR uses not
only a single coefficient but also its neighbors as well as its
psycho-visual properties. The experimental results show that a
CIWaM Quantization improves the compression and image per-
ceptual quality and impacts, on the average,with about 20 per
cent . One of the future tasks is the use of a threshold based on
the e-CSF properties, namely a threshold based on the perceptual
importance of a coefficient, regardless of its numerical value.
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