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Abstract

Recoloring is a term referring to alteration the color of an object in an image. We propose
a new method where a physics-based surface reflectance estimation has been utilized for
modeling the change in the chromaticy of an object and illuminant light. Unlike the
existing methods, chromaticy of an object is estimated independent of the illuminant. This
report presents a novel approach where the illuminant color is estimated from a single
surface without any further assumption on the chromaticy of the illuminant. Realistic
recoloring results achieved on complex natural images captured by uncalibrated cameras
clearly demonstrate that the proposed framework significantly outperforms state-of-the-art
work on recoloring which disregards the underlying rules of physics.

Keywords: Dichromatic Reflection Model, Physic-based vision, Color-vision, Recoloring

(a) Red (b) Green (c) Yellow

Figure 1: A snapshot of an apple has been recolored with two different colors using our
method. Can you guess which one is the original photograph?!
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1. Introduction

Colorization is a term introduced by Wilson Markle in 1970 to describe the computer-
assisted process he invented for adding color to black and white classical movies, TV pro-
grams and old images (Burns). Several commercial applications and plug-ins have been de-
veloped to facilitate this task so far(Markle, 1984). Obtaining a color image from grayscale is
a very ill-posed problem; therefore conventional methods require intensive user-interaction
that is given a set of color hints estimated by a human operator, a colorization method
applies these colors to the grayscale image in order to obtain a color image similar to what
the original scene could be like (Levin et al., 2004). Note that the result would be highly
dependent on user’s choice of colors. Movie colorization is often achieved by tracking pixels
in each frame, and applying the color from their corresponding pixel in the first colored
frame (Martinez and Lim, Jun 13, 1989). The main problem of colorization methods, de-
spite their high computational cost, is that as they are only dealing with gray-scale images,
their application is limited to old images, and movie frames.

Recoloring or color-alteration, on the other hand, is a term referring to the modification
and adjustment of the image color appearance. Color modification methods are applied to
photo montage (Lalonde et al., 2007), color correction, visual effects in movies (Reinhard
et al., 2004), and also in industrial and commercial applications as a technique to visualize
the final color appearance of the 3D object products before actual production in order to
improve and facilitate their design (Shen and Xin, 2005). In this report we will focus on
recoloring an object in a single snapshot.

Some graphical methods have been developed for colorization and recoloring so far in
which the colors are being shifted or propagated through the image using complex mathe-
matical equations. Graphical methods often fail to properly generate a realistic perception
of the recolored object (e.g. the case of non-white illuminant) as they suffer from a lack
of knowledge about the physics behind it. One would raise an important question: “What
makes an object look realistic in an image?”. This question can be answered with the help
of physics rules applied on the light interaction with the object surface. In that way, we
come to the realization that, the incident light not only affects the brightness of the pixels
we perceive in the image of an object, but also affects their chromaticy. Therefore we be-
lieve by making a distinction between different regions of the object surface (e.g. shading,
and highlights), and decomposing the object chromaticy into the natural color of the object
surface as well as the color of the illuminant, we are capable of performing the correct color
modification.

To this end, we have developed a physics-based method that not only is capable of
incorporating all the 3 channels of a high quality photo, but also results in a high quality
re-colored image by extracting the physic-based geometrical model of the light interaction
with the object surface. This physic-based model, known as the Dichromatic Reflection
Model (DRM) (Section 3.1), is capable of interpreting the object-pixel color-values in the
image resulting in the geometrical models of the object surface reflectance and the incident
light (known as the intrinsic images). Yet we have managed to maintain a fairly low com-
putational cost and, with the exception of object segmentation, virtually no user interaction
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is required. Unlike most coloring methods, we don’t require to convert the image to a color
space other than RGB.

Realistic results achieved through experiments clearly demonstrate that the proposed
framework significantly outperforms previous work on recoloring in which the underlying
physics rules have been disregarded. The existing methods based on physics-based re-
flectance model have only presented results for a set of images taken under laboratory
restricted conditions. To best of our knowledge, we have obtained the first reported results
for reflectance estimation in real-world images with complex shading and highlights.

The rest of the report is organized as follows: First a review of the related work is
given in Section 2. Then our main goal is discussed in Section 3; followed in Section 4 by
the detailed explanation of the method we have developed to solve the problem. Section 5
analyzes the results we have obtained. Conclusions are drawn in Section 6 followed by ideas
for improving the performance of the method in our future work.

2. Related work

Even though the image colorization trend dates back to 70s, color modification recently
has attracted much attention as the quality of the imaging devices has been improved.
Color modification in an image is an active research in computer vision as well as computer
graphics. Several methods have been developed so far in order to improve the quality of
the result, speed up the process, and decrease the user assistance as much as possible. We
first review the methods dealing with color modification which would include: colorization
applied to recoloring, color shifting, and color transfer between images. Later on in this
section, we investigate the state-of-the-art dealing with reflectance estimation.

2.1 Colorization and recoloring

Several methods developed for colorization of the gray-scale snapshots have also been used
in order to modify a colored image. These methods mainly consist of partial hand-coloring
of regions of an image or video and propagating the colored points (known as color markers
or hot-spots) to the rest of the image using a fairly complex optimization algorithm. Exam-
ples of such optimizations in existing literature include: energy (the difference of neighbor-
ing pixels brightness) minimization (Konushin and Vezhnevets, 2006) which is inspired by
graph-cut algorithm (Vezhnevets, 2005), and color similarity maximization of neighboring
pixels in space-time that have similar intensities (Levin et al., 2004). The main problem
with such methods is their significant computational time as well as excluding the color
information obtained by modern imaging devices. Both above mentioned methods work
solely in YUV color-space. Color-marker based methods are often incapable of achieving
high quality results and preserving the sharp texture as they perform a zero-order color
approximation of the object. The intensive user assistance to assign the markers needs to
be repeated as well as the entire computation every time the choice of color changes. The
main advantage of such methods is that no segmentation is required and the colorization
can be performed for multiple objects in the scene with different colors simultaneously.

To improve the result of the existing color-marker based colorization, a novel method
has been developed based on the idea that preserving the image contrast results in a more
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realistic colorization. In this method, the result of a color-marker based colorization is
then adjusted so that the direction of the maximum-contrast would agree with the gradient
in the original gray image (Drew and Finlayson, 2008). The authors have expressed that
although the color values specified by the markers as well as the pixel-wise brightness
would not necessarily be preserved, a fairly realistic colorization has been achieved. Despite
the significant improvement in the quality of the colorization result, the method still suffers
from some of the main drawbacks of the marker-based colorization methods used as its prior
stage. In fact the computational complexity has even been increased, while the application
of the method is still limited to gray-scale images. However, the amount of user-interaction
is partially decreased as the method can better handle complex shading and color-contrast
without the detailed marker-specification required by previous methods.

(a) (b) (c)

(d) (e) (f)

Figure 2: Here the effect of developing a physical reflection model is demonstrated: (a) The
original image; (d) Segmentation mask; (b)and(c) are the results of recoloring
and applying cooling photo filter respectively using a professional photo-editing
software which fails to handle areas of highlights (errors are marked in red); (e)and
(f) have been obtained by proposed method in which the areas of highlights are
treated differently than the rest of the object surface.

Color modification and recoloring algorithms embedded in professional photo-editing
applications perform by calculating an offset in the hue, saturation and luminance between
the source and destination colors. The source image is then adjusted using these offsets to
produce the desired color (Gonsalves, Feb 26, 2002). Such methods are often quite fast,
yet they suffer from a lack of physical model to correctly separate object reflectance from
illuminant color in the image leading to a less realistic result, while requiring a perfect
prior segmentation for the object of interest. Figure 2 compares the recoloring result of a
professional photo-editing application with the recoloring achieved by the proposed method,
as the later seems to be more robust dealing with a non-white illuminant.
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Recently another type of image color modification called color transfer has been in-
troduced which is capable of extracting the color characteristics from a source image and
applying it to a target image producing an image with the target scene but look and feel
of the source image (e.g. warm-tone sunset). To address that goal, a method has been de-
veloped which decomposes the covariance between three components of pixel values while
calculating the mean along each of the three axes, and then a transform is calculated to
scale, rotate and shift pixel data of target image to fit to the color distribution of the
source image (Xiao and Ma, 2006). In a very similar work, the color transfer process has
been optimized to work in real-time (Reinhard et al., 2004). While the former method can
perform in any color space, the later approach is restricted to Lαβ space. Both methods
result in a fairly realistic modified image. However in the case of the source and target
images being different in texture and characteristics to a great extent, a set of swatches is
required to be specified by user which extends the user-interaction. Unlike color transfer,
in recoloring tasks only a snapshot of an object is given, and often no information about
the color distribution of the target scenes available.

2.2 Physics–based Methods

Object reflectance estimation from an image is an active subject in color-vision whose
application ranges from color constancy to segmentation and classification. The main idea
is if we would be able to build a realistic model of the light interaction with the object
surface, we could extract crucial knowledge about the object surface geometry as well as
the illuminant light. Such knowledge would then be used in order to remove the effect
of a non-white illumination (color constancy), locate and remove the areas of shadows
and highlights (essential in object segmentation), and obtain the geometrical model of the
object (improving the object classification). Therefore the followings is devoted to a review
on methods in which an understanding of the physics behind the object color perception
is developed based on the Dichromatic Reflection Model (DRM) which will be explained in
more details in Section 3.1.

Using the idea that the main variations in an image sequence of a fairly static outdoor
scene should be the illumination changes, a method for object color decomposition has been
developed in which the object surface reflectance model has been extracted, assuming the
camera response to be linear (Weiss, 2001). The author has used the assumption that when
derivative filters are applied to natural images, the filter output tend to be sparse. Then a
maximum likelihood estimator has been used for surface reflectance recovery.

A novel approach has been developed for color transfer with the assumption of known
illuminant. First a DRM is fitted to the object pixels in order to decompose the object pixel
values to global object chromaticy and its geometrical model, but to avoid over-fitting, the
model is optimized not only in regard to the source color, but also to the desired target
color (Shen and Xin, 2005). Therefore, the main innovation in this method is exploiting a
weighted least square giving more importance to the color channels whose source and target
values are more different. In order to estimate the source object color, the authors suggested
to use the pixels whose color vector angle to illuminant color vector is greater. The DRM
fitting have also been used for the matter of color-based segmentation. Interesting results
have been obtained using this method; however the extracted geometrical model of the
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object is dependent on the target, and the problem of unknown illuminant is yet to be
solved.

3. Physic-based Color Modeling and Recoloring

In order to develop a better understanding of the light interaction with the object surface,
we use a physics-based model of reflection called the Dichromatic Reflection Model (Shafer
and Lischinski, 1985) which enables us to extract the knowledge necessary for modeling the
effect of changes in the illuminant and object colors on the object perception. This model
states that two distinct types of reflection -body and interface reflection- occur, and that
each type can be decomposed into a relative spectral distribution and a geometric scale
factor. Therefore given an image of an object in any imaging conditions, as long as our
assumptions hold, we are capable of extracting the geometrical characteristics of that object
and the illuminant light. These geometrical characteristics would then enable us to generate
a snapshot of that object with the same imaging condition varying only the chromaticy of
the object and illuminant light.

(a) (b)

Figure 3: (a) Reflection of the light from an inhomogeneous material; (b) Pixel values for
a set of points on a single surface lie within a parallelogram in color space.

3.1 Dichromatic Reflection Model (DRM)

According to Shafer, pixel values for a set of points on a single surface must lie within
a parallelogram in the RGB space, bounded by RGB vectors Ci and Cb (here on we
indicate vectors in bold font). These vectors represent the direction of the interface and
body reflectance from the object surface respectively (Figure 3(b)). The validity of the
dichromatic model has been proven for a variety of inhomogeneous dielectric materials
commonly observed in natural scenes (Tominaga and Wandell, 1989). Although this model
does not assume a point light or uniform illumination distribution over the scene, it requires
a prior segmentation (Figure4(b)) for multi-colored objects in order to fulfill the assumptions
of the model.

The dichromatic model can describe the color of each pixel inside a single-colored object
and illuminated by a single-colored illuminant, using images of the amount of body (”dif-
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(a) (b) (c) (d)

Figure 4: Here the DRM fitting have been applied on a natural image with complex shading
and highlights: (a) The original image; (b) Segmentation mask; (c) and (d) are
the intrinsic images for body and interface reflectances respectively.

fuse”) and interface (”specular”) reflections at each pixel which are called intrinsic images
(Figure4(c) and 4(d)). Equation 1 demonstrates the dichromatic model in the mathematical
format, where f is the RGB triple defining the color of every pixel in the object surface, mb

and mi are the intrinsic images of body and interface reflectance respectively, and Cb and
Ci are the colors of the corresponding colors.

f = mbCb + miCi (1)

Several methods have been developed to approximate the dichromatic model of an ob-
ject. Kravtchenko and Little have introduced a spatial-based approach in their segmen-
tation method in which they approximate the two dichromatic planes for specular and
body reflectance considering the lighter and darker pixels separately (Kravtchenko and
Little, 1999). Shen and Xin have solved the model with the assumption of a known il-
luminant (Shen and Xin, 2005). Later on we propose a novel method in which a fairly
accurate approximation of the dichromatic plane of an object under an unknown illuminant
is achieved.

3.2 Intrinsic images estimation

Using the correlated RGB color space the dichromatic equation can be solved with the
assumption that the Cb and Ci color vectors are constant for the entire object to be re-
colored (single-colored object and illuminant). The material coefficients (mb and mi) are
fixed for each pixel which means the coefficients are the same for R, G, and B values of the
same pixel. Then for an image of N pixels, we would have 3 × N equations (Equation 2)
while the number of unknown values would be 2×N for mb and mi in addition to the 6 values
defining the RGB triples of Cb and Ci color vectors. Having said that, for a large enough
number of pixels, this set of equations can then be solved using an error minimization.
Algorithms for approximating Cb and Ci are proposed in section 4
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B


 (2)

Therefore, given the RGB values of Cb and Ci, and using the pixel RGB values f , we are
able to calculate the intrinsic image matrices mb and mi which minimize the fitting error of
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the model to the object pixels. In other words, given the dichromatic plane defined by Cb

and Ci we extract the geometrical model of body and specular reflectance by minimizing
the projection error of object pixel value on the plane (Equation 3). Note that the pseudo–
inverse notation implies the least square error minimization.

f =




CR
b CR

i

CG
b CG

i

CB
b CB

i


×

[
mb

mi

]

[
mb

mi

]
= pinv







CR
b CR

i

CG
b CG

i

CB
b CB

i





× f (3)

The correlated RGB color space and Gamma Correction

RGB is a common color space for monitors and is more convenient for users. But since it is
a correlated color space, most existing coloring methods require a transformation of image
pixels into a non-correlated and more photometric invariant color space in order to ”decor-
relate” the color (Reinhard et al., 2001). In contrast, we do not require any decorrelation
transform. Using the RGB color space one should bear in mind that due to the Gamma
expansion that occurs largely in the nonlinearity of the electron-gun currentvoltage curve in
Cathode Ray Tube (CRT) monitor systems, image signals are gamma encoded (Equation 4)
prior to be shown on monitors which helps to map signals into a more perceptually uniform
domain (Poynton, 2003). Therefore a Gamma Correction or decoding(Equation 5) process
should be performed on the image signals to preserve the linearity of the color signals prior
to the DRM approximation.

Vout = Vin
γ (4)

Vout = Vin

1
γ (5)

In this thesis we use images from the Internet for which no calibration data is available.
For that matter we have set γ to be 2.2 for sRGB color space.

3.3 Color alteration or Recoloring

The main goal of our method is changing both object and illuminant colors. After the
estimation of the object reflectance model, recoloring of the object is straightforward. The
entire color alteration process is demonstrated in the Equation 6, where f ′ is the object
reflectance in the new body and illuminant color (Cb

′ and Ci
′ respectively) specified by the

user.

f ′ = mb × α×Cb
′′ + mi ×Ci

′ (6)
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Cb
′′ =




CR
i
′
/CR

i 0 0
0 CG

i
′
/CG

i 0
0 0 CB

i
′
/CB

i


×Cb

′ (7)

Note that according to the model (see Figure 3(a)), the body reflectance itself relies also
on the illuminant color. Therefore, we have modeled the effect of illuminant color changes
on the object surface using the term Cb

′′ which is defined as in Equation 7. We have
introduced a new term α to simulate the desired change in the color intensity as the colors
in the dichromatic model are normalized and due not account for intensity. For the case of
multi-colored objects, different regions should be separated prior to recoloring in order to
fulfill the DRM assumption of single-colored object while preserving the areas of highlights.

Note that despite the computational complexity of the dichromatic plane estimation, the
re-coloring algorithm has been defined as simple as addition and multiplication operations
which, implemented in logic-gates, would perform in real-time. This can be considered as
a unique ability compared to most state-of-the-art methods which require to repeat their
entire process each time a new color is specified.

4. Chromaticy estimation methods

In this section we propose methods for the estimation of the body reflectance color Cb and
interface reflectance color Ci (Figure 5(c)). The body reflectance color(Cb) is estimated
using Robust Singular Value Decomposition (RSVD) regardless of illuminant color. Two
approaches will be introduced in this section which are capable of estimating the illuminant
color (Ci).

(a) (b) (c)

Figure 5: Color histogram for a single-colored object in the presence of highlights is demon-
strated: (a) Original image; (b) RGB color histogram; (c) Expected directions
for body and interface reflectance chromaticies are marked as Cb and Ci vectors;
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4.1 Dichromatic plane estimation

In order to estimate the color vectors defining this parallelogram, first a plane is fitted to
the object pixels. Consider a plane with a normal n̂. In the ideal case every object pixel
should belong to the plane, but in practice, as we do not limit the imaging conditions and
due to noise, not all pixels would fall in the plane. The projection error for a point f(x)
of the object onto the plane would then be defined as the perpendicular distance from the
pixel RGB vector to the plane:

e (x) =
∥∥∥(f (x))T n̂

∥∥∥ (8)

We use ˆ to indicate the unit length vectors. The total error for all points on the object
(indicated by the region Ω) in the LS sense is

e =
∫

Ω

e2 (x) dx =
∫

Ω

n̂T
(
ffT

)
n̂dx = n̂T µn̂ (9)

where µ is the structure tensor. We use the Lagrange multiplier to model the constraint
that n̂Tn̂ = 1,

λ
(
1− n̂T n̂

)
+ n̂T µn̂. (10)

This equation is minimized by setting the derivative to zero

µn̂ = λn̂ (11)

As expected, the minimal error is obtained by finding the eigenvector corresponding to the
smallest eigenvalue of the distribution. Using the dichromatic plane, the search for the
two chromaticy directions is limited to within a plane. We went through the steps of this
derivation because it better explains the robust extention which follows below. Note that
this steps would also be helpful in Section 4.3.2.

4.2 Body reflectance color estimation

The object pixel values for which the mi = 0 form a line passing through the origin. Fitting
a line through these pixels allows us to compute Cb. The fitting error of an object pixel to
a line given by the vector v̂ is

e (x) =
∥∥∥f (x)−

(
(f (x))T v̂

)
v̂
∥∥∥ (12)

And the total fitting error for all the pixels inside Ω is (we will omit the spatial arguments)
∫

Ω

e2dx =
∫

Ω

fTf − v̂T(fTv̂)T f − fT(fTv̂)v̂ + v̂T(v̂Tf)(fTv̂)v̂dx (13)

Using the constrain v̂Tv̂ = 1 we have:

v̂T(v̂Tf)(fTv̂)v̂ = v̂TffTv̂
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And it can be proven that:

v̂T(fTv̂)Tf = fT(fTv̂)v̂ = v̂TffTv̂

Therefore the error term (Equation 13) can be rewritten as:

e =
∫

Ω

fTf − v̂T
(
ffT

)
v̂dx (14)

The above equation can be solved in a similar way as in the previous section using
the Lagrange multiplier and setting the derivative to zero. However the minus sign in the
equation indicates that here the eigenvector which corresponds to the higher eigenvalue is
desired. Intuitively, having the assumption that most of the object pixels belong to the
body reflectance, the higher eigenvalue is expected to indicate the Cb direction.

Robust Body Reflectance Estimation.

Although the least squares (LS) orientation estimation used in SVD would perform well
in the case that all pixels belong to the same orientation, in our case, in which there are
two main orientations (Cb and Ci), the LS estimation will mix the two orientations and
give a wrong result. In order to avoid that, a robust estimator (van de Weijer and van den
Boomgaard, 2005) is constructed:

e(x) =
∫

Ω

ρ(e(x))dx (15)

In the current work we will apply the following Gaussian error norm:

ρ(e) = 1− exp
(
− e2

2m2

)
(16)

In a robust estimator, large deviations from the model are considered as outliers, and
therefore, they are not taken into account very heavily. While LS estimation is very sensitive
to outliers. In our application large deviations from the model are mainly due to the mixing
of two different directions, Cb and Ci. The error, Equation 15, can now be rewritten as
(we will omit the spatial arguments):

e =
∫

Ω

ρ

(√
fTf − v̂T(ffT)v̂

)
dx (17)

Similar to Equation 10, a Lagrange multiplier is then used for minimization subject to the
constraint vT v = 1,

d

dv̂


λ

(
1− v̂Tv̂

)
+

∫

Ω

ρ

(√
fTf − v̂T(ffT)v̂

)
dx


 = 0 (18)
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Using Equation 18, as the error function leads to

η(v̂)v = λv̂ (19)

Where η is defined as follows and Gm is the Gaussian function at scale m.

η(v̂) =
∫

Ω

ffTGm

(√
fTf − v̂T(ffT)v̂

)
dx (20)

The main difference with the ordinary LS estimator is that here the matrix η is depen-
dent on v̂. Note that η is called ”robustified” structure tensor in which the contribution of
each object pixel vector is weighted not only by its distance to the plane, but also according
to its distance to the orientation model. Again, points far away from the line direction v̂
are considered outliers, and therefore, do not corrupt the estimation.

A fixed point iteration scheme is used to find a solution. Let v̂i be the orientation
vector estimate after i iterations. The estimate is then updated as the eigenvector v̂i+1

of the matrix η(v̂i) corresponding to the largest eigenvalue, i.e. we solve the Equation 21.
The proposed scheme is a generalization of the well-known fixed point scheme (also called
functional iteration) to find a solution of the equation v̂ = F (v̂).

η(v̂i)v̂i+1 = λv̂i+1 (21)

It should be noted that this iteration scheme is very similar to mean-shift, bilateral
filtering, and anisotropic diffusion(van den Boomgaard and van de Weijer, 2002). Figure 6
illustrates an example of the iterative search for direction of the Cb. The original estimation
made by ordinary LS is refined at each iteration by changing the weights leading the method
to converge to the robust, and in this case much better, estimation of the Cb.

We need an initialization vector v̂0 for the iterations which can prove crucial to esti-
mation of the vector to which the algorithm would converge. Therefore, based on the fact
that the specularities are brighter than the body reflectance pixels, instead of using all the
pixels, we have decided to use the direction specified by the darker half of the object pixels
as the initialization state to better guide the algorithm. While for the rest of the iterations
we keep fitting and refining the model using the entire pixel set as the weightings in the
robust estimation would already take care of the outliers.

Note that the iterative scheme does not necessarily lead to the global minimum of er-
ror. In fact, here we are not interested in that global minimum as the specular pixels are
distributed along Ci direction, while here we are only modeling the body reflectance chro-
maticy. And the specular pixels perform as a sort of outliers which our iterative refining
algorithm is developed to decrease their effect on the Cb estimation at each iteration.

4.3 Illuminant chromaticy estimation

In order to estimate the chromaticy of the illuminant (Ci) two approaches were developed.
The first illuminant estimation approach is based on the assumption that the colors which
typical light sources display are limited to a set of standard illuminant, while the second
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Figure 6: Here an example of robust body reflectance estimation is given. The primary
estimation vector using ordinary SVD is demonstrated by black line, while the
method iteratively converges to the robust estimation (marked in light red).

approach, can better deal with the case for which these assumption does not hold. The first
approach is more robust to noise and doesn’t require a fairly large specular area, whereas
the second approach is fast and is capable of estimating non-planckian illuminants.

Several illuminant estimation methods have been proposed in color constancy research.
To our knowledge, we present the first illuminant estimation based on the reflectance of a
single-colored object. However in contrast to other methods we require a pre-segmented
object. This problem can be overcome using a physics-based segmentation method (Vazquez
et al., 2008). Note that for illuminant estimation, the segmentation is not required to be
perfect.

4.3.1 Confined illuminants estimation (CIE)

For the matter of simplification here in this approach we assume that the chromaticy of
common light sources is limited and follows closely the Planckian locus of black-body radia-
tors which is believed to be a function of temperature T in Kelvins (Finlayson and Schaefer,
2002). For this matter we sample the colors of the Planckian Locus (Figure 7) for the stan-
dard illuminants (T ⊂ 4000 ∼ 25000 with steps of 1000 K◦). Then the dichromatic equation
is solved for all the pixels of the colored object using each of the possible illuminants, and
mb and mi values are calculated. The illuminant chromaticy (Ci) which minimizes the
object reconstruction error (Equation 22) would be chosen, and the corresponding mi and
mb values for each pixel are then considered as the dichromatic model of the object.

E(Cb,Ci) =
∑

j

((fj −mbjCb −mijCi)T (fj −mbjCb −mijCi)) (22)
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(a) (b)

Figure 7: The chromaticy of common light sources is limited and follows closely the Planck-
ian locus of black-body radiators: (a) The Planckian Locus inside the color gamut
for CIE XYZ color space; (b) Color regions for which the distance to the Planck-
ian Locus (sampled for T value of 4000∼2500 degree Kelvin) are in the same
range.

4.3.2 Unrestricted illuminants estimation (UIE)

In Section 4.3.1 we made an assumption of the Planckian illuminant in order to simplify
the illuminant chromaticy estimation, here we solve a more general case in which this as-
sumption would not hold. But as we no longer limit the range of the illuminant chromaticy,
we require to collect enough information from the object surface in order to estimate the
illuminant color. Therefore, we require the additional assumption of having a substantial
number of object pixels falling into specular areas.

From our initial assumption of single-colored object, it follows that the variations in the
chromaticy of the object surface can only belong to shading and highlights. We have further
observed that most variations are caused by a single physical cause. Either the shape of
the object causes the pixels to vary along Cb or highlights cause them to vary along Ci.
Therefore, we make use of object pixels gradient in RGB-space, denoted by ∇f , to discover
the orientation of these variations.

∇f =




Rx

Gx

Bx


 (23)

Here we apply the constraint of dichromatic plane by projecting the gradient vectors on
the dichromatic plane using the eigenvectors corresponding to the highest calculated eigen-
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values one being v̂ (the Cb estimate from Section 4.2) and the other is the perpendicular
vector which we call Cl. Therefore, we denote ∇fp as the projection of ∇f onto the plane.

∇fp =
(

fT .Cb fT .Cl

)T (24)

The energy function ev(α) is then defined as below:

ev(α) =
∫

Ω

(‖∇fp(x)‖)2δ(α, < v̂,∇fp(x) >)dx (25)

Where < â,
−→
b > is the angle of vector

−→
b to the direction â, and δ(α, ϕ) is defined as below:

δ(α, ϕ) =
{

1 |ϕ− α| < T
0 Otherwise

(26)

Where T is the angle threshold. In fact, ev(α) indicates the summed derivative energy,
(‖∇fp(x)‖)2, of all derivatives in the range α± T .

Examples of the discrete histogram of gradients for three different objects are demon-
strated in Figure 13. We chose Ĉi as the direction whose angle to Ĉb is αi:

αi = arg max
α

ev(α) (27)

As mentioned previously, the color variations on the single-colored object surface are
due to either shading or highlights. We expect to observe up to two permanent peaks in
the histogram. With the assumption of having substantial number of object pixels falling
into specular areas, there should exist one peak in the histogram formed by the highlights.
We observe two cases:

• Having only one peak in the histogram would indicate that the object surface is fairly
smooth causing the shading derivative energy to be small, and therefore, the observed
peak is due to highlights indicating the Ci direction (Figure13(a)).

• In the case that two distinct peaks are observed, the peak with the highest absolute
angle from Cb direction indicates the Ci direction (Figure13(b)). And the closest
peak is around the Cb direction.

5. Results

The main issue with analyzing the quality of a recoloring method is often lack of a proper
groundtruth. Since little or no information regarding the pixel color distribution of the
object with a different color or under a different illuminant in the real scene is available,
the quality criteria of recoloring is subjective. In other words, the estimations can only be
judged either using reconstruction error, or with the help of human users. Therefore, in
order to evaluate the quality of our methods, we have made use of a set of synthetic images
which enable us to introduce a recoloring error as well as a chromaticy estimation error. In
this section, the two illuminant estimation methods have been compared using the before
mentioned criteria and the more robust method has been selected and used for recoloring a
set of natural images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: Two illuminant estimation methods have been compared using an example from
the synthetic image dataset. (b) and (b) Examples of the intrinsic images (mb

and mi) with which (a) and (d) has been generated; Given (a) to the methods:
(f) and (g) are estimated intrinsic images using UIE; (j) and (k) are the estimated
intrinsic images using CIE; (h) and (l) are generated using the estimated intrinsic
image for each method with the same Cb and Ci as one producing (d). It’s clear
that the incorrect estimation using CIE have resulted in an incorrect recoloring.

5.1 Evaluating the methods using synthetic images

To evaluate the proposed chromaticy estimation methods, first a dataset of synthetic im-
ages has been generated which performs as a groundtruth for reflectance estimation and
recoloring. The quality of the proposed chromaticy estimation methods is evaluated using
two terms Angular Estimation Error and Non-Planckianness of the illuminant which are
defined in this section.
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Synthetic image dataset

The dataset of synthetic images (e.g, Figure8(a)) has been generated using 140 randomly
generated RGB color vectors which are divided into two sets of the same size as Cb and Ci.
For each pair of color vectors ,Cb and Ci, a pair of low frequency noise images with different
scales (Figure 8(b) and 8(c)) has been generated. Each synthetic image in the dataset has
been generated by substituting these values in the DRM (Equation 1). The dataset consists
of 4900 images. The process to generate each image is defined, in the mathematical notation,
as follows. Let B = {Cj

b : j = 1, ..., |B|} and I = {Ck
i : k = 1, ..., |I|} be the sets of distinct

color vectors for body reflectance and illuminant respectively. And for each pair of two
color vectors Cj

b and Ck
i the matrices mjk

b and mjk
i are the randomly generated intrinsic

images. Then each synthetic image imgjk is:

imgjk = mjk
b ×Cj

b + mjk
i ×Ck

i (28)

Angular Estimation Error

The term Angular Estimation Error (AEE) is defined as the angle between the direction of
the estimated and actual color vectors (V̂est and V̂ respectively) as defined in Equation 29.
Here we report AEE in radians.

AEE = arccos(V̂ .V̂est) (29)

Non-Planckianness

We define the term Non-Planckianness (NP) as the minimum angular distance of the light
color vector Ĉi to the Planckian locus in radians as given in Equation 30 where P̂ (T ) is the
Planckian light vector for temperature value of T.

NP = min{arccos(Ĉi .P̂(T))} (30)

The smaller NP values indicate the colors which are closer to the chromaticy of the natural
illuminants. Figure 7(b) illustrates the illuminant colors for different NP values.

Method evaluation

As mentioned previously, for each image in the dataset, the chromaticy estimations have
been performed using the three methods, and AEE has been used as a criteria to measure
precision of the estimations. Here the Figure9(a) compares the measured angular estimation
errors for each chromaticy estimation method based on the NP value of the illuminant. It
is clear from the histogram that body reflectance color estimation is fairly independent of
the NP of the illuminant light. As expected, for higher NPs, the UIE method out performs
the CIE method.

The two illuminant estimation methods have also been compared using their reconstruc-
tion error(Figure9(b)) and mean recoloring error1(Figure9(c)) demonstrating the robust-
ness of UIE to the NP of the illuminant chromaticy. Note that although UIE is more robust,

1. Recoloring error for a synthetic image is defined as the mean square pixel-wise difference of the recolored
images generated using the estimated and original intrinsic images. The mean is over the recoloring
errors for an arbitrary set of Cb and Ci vectors (for that matter we have used 10 Cb and 10 Ci vectors).
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(a) Chromaticy Estimation Error (b) Reconstruction Error (c) Recoloring Error

Figure 9: The chromaticy estimation methods have been compared using their angular esti-
mation errors. Here the vertical axis represent the error value while the horizontal
axis stands for the Non-planckianness of the illuminant light. The blue and ma-
genta curves stand for measured errors using CIE and UIE illuminant estimation
methods, while the black curve in Fig.(a) stands for Angular Estimation Error
of the body reflectance chromaticy. Note that for the matter of recoloring and
reconstruction the robust Cb estimation method has been used along with the
two Ci estimation method.

CIE performs slightly better for estimating the illuminant in the case of a highly Planckian
(natural) light which makes it competitive for images of the outdoor scenes.

5.2 Recoloring of natural images

A set of natural images have been recolored using our framework. We have chosen UIE
method for illuminant estimation. The estimated intrinsic images are demonstrated in
Figure10. The intrinsic images seem to make a good estimation of areas of highlights
(see images of interface reflectance). Figure 11 and Figure 12 illustrate the results for
illuminant and body reflectance changes respectively. Realistic results achieved suggest that
the proposed framework outperforms previous work on recoloring in which the underlying
physics rules have been disregarded.

Note that few existing methods which make use of physics-based reflectance model, have
only presented the results on a set of images under laboratory restricted conditions (Shen
and Xin, 2005). To best of our knowledge, these are the first reported results for reflectance
estimation in real-world images with complex shading and highlights.

5.3 UIE method on natural images

In Section 4.3.2, two general types of the histogram of gradients (one or two major peaks)
have been explained. In some natural images (e.g, 13(c)), We have observed a special case
of the histogram with one major peak in which the peak has occurred very close to the
Cb direction, and therefore, the illuminant estimation method failed to make a realistic
estimation of the illuminant color. We argue that this is due to the occurrence of the
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Figure 10: A set of natural images have been presented in the first row, followed, in the
next rows, by the segmentation masks and the intrinsic images (mb and mi)
obtained by our framework (with the option of UIE as illuminant estimation
method). Note that for two cases, the entire image area has been used.

Figure 11: Here the result of changing illuminant chromaticy of the images presented in
Figure10 using our framework has been presented. Each row obtained by setting
the new Ci to Planckian illuminant with the temperatures 4000, 7000, and 10000
Kelvin. Note that for the matter of visualization, we applied a simple color filter
on the object surrounding to simulate the corresponding color composition.
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Figure 12: Here the result of changing body reflectance chromaticy of the images presented
in Figure10 using our framework has been presented. The small squares at the
top left of each image denote the user specified Cb with which the image have
been obtained.

shading variations in the areas of the highlights which causes the direction indicated by
pixel gradient to be a mixture of Cb and Ci. For that matter, we suggest the use of CIE
method. Such experiments point out that further investigation of the gradient histogram is
still required.
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(a) (b) (c)

(d) (e) (f)

Figure 13: Examples of the discrete histogram of gradients for three different objects are
presented: (a), (b), and (c) Illustrate the histograms; (d), (e), and (f) The
original images.

5.4 Preliminary results on handling interreflections

Existence of interreflections of surrounding objects often makes the recoloring process much
more complex, and the conventional photo-editing applications often fail to correctly model
these details (Figure 14(b)). For our recoloring framework we have solved this problem based
on the assumption that the area of interreflections is fairly small compared to the rest of
the object, and would not affect the DRM estimation. Therefore, since our DRM fairly fits
the object color vectors, the reconstruction error would be largely due to interreflections,
and the difference between the original and the reconstructed images of the object would
include the effect of the interreflections. Then simply by applying this difference image to
the recolored image we preserve the interreflections . Figure 14 illustrates an example of
area of interreflections along with the result given by a professional photo-editing software.
Note that here the quality of the result is highly dependent on the accuracy of the estimated
reflectance model.

6. Conclusion and Future Work

We have presented a physic-based method for the estimation of the object reflectance for
presegmented images. The method simultaneously estimates the body and interface re-
flectances. Object chromaticy have been estimated independent of the illuminant color
using a Robust SVD method. Two methods have been introduced in order to estimate the
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(a) (b) (c)

Figure 14: Preliminary results on handling interreflections (a) The original image; (b) The
recoloring using a professional photo-editing software; (c) Recoloring obtained
with our framework after including the interreflections.

chromaticy of the illuminant light. Using the proposed physic-based method a framework
for modeling the change in the object color as well as the chromaticy of its illuminant
light has been developed. The possible applications for this framework are photo montage,
color correction, visual effects in movies, and also computer-aided design. The experimental
results on natural images taken with non-calibrated cameras indicate that a realistic recol-
oring of an object with complex specularity and shading have been achieved. As the current
framework is based on dichromatic reflection model, it requires the selected region to belong
to a single-colored object under a single-colored illuminant, yet virtually no further user in-
teraction is required. Finally we have managed to maintain a fairly low computational cost
for reflectance estimation.

However, the current framework can be improved in several ways. We propose, as our
future work, to embed into the framework an object segmentation method based on the
Dichromatic Reflection Model. Also preliminary improvement of the estimations have been
achieved by applying further restriction on the Dichromatic Reflection Model that is lim-
iting the geometrical coefficients (intrinsic images) to positive values. In addition, it has
been observed from the experimental results that when the illuminant and body reflectance
chromaticies are close or complex shading variations occur in the areas of highlight, the
estimation methods tend to confuse the actual chromaticies; therefore, further investigation
on the estimation methods is required. Furthermore, we propose to make use of psychophys-
ical experiments in order to introduce a quantitative measurement for the accuracy of the
recoloring objects in the natural images. Lastly, we believe further investigation on han-
dling colored shadows and interreflection on the object surface (especially the case in which
chromaticy of the interreflections and object surface are close) may lead to a more robust
recoloring framework.
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