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Blob detection and grouping for texture description and other
applications

by
Anna Salvatella and Maria Vanrell

Abstract
The goal of this report is to present some work on blob detection and grouping developed in the context of
a wider project of image content interpretation where the main topics are color, texture and its interaction.

In this work the problem of texture representation for natural textures is approached from a blob-like
point of view and several applications derived from this approach are presented.

Firstly the assumption that natural images can be understood as sets of Gaussian blobs is presented.
From this point, a blob detection algorithm based on scale-space representation of images is presented,
yielding a blob decomposition of images.

A second step is based on the assumption that in most natural images a number of groups of similar
arise. In order to �nd these blobs' groups a blob representation space with perceptual properties is
de�ned. In such space, blobs that are perceived as belonging to a same group should be represented by
close-by points. The grouping of similar blobs is performed by grouping the points representing them in
this perceptual space by the N-cut algorithm.

Finally, the last section of the paper is devoted to showing several applications of this blob's groups
image representation.
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1 Introduction
The growing of digital image databases makes it necessary to have instruments which are able to auto-
matically �nd images in large sets according to useful criteria. These tools should be able to list all the
terms a user could possibly use to describe what is present in the image and also what is conveyed from
it. Several steps have already been done towards this di�cult goal [1]. Nevertheless, the semantic gap,
de�ned as the distance between what is perceived from an image by a user and what is inferred from that
image in a computational point of view, has not been completely bridged yet, and thus it is still limiting
the results of these tools.

In this paper we focus on an image representation of texture which is based on how users perceive and
describe textures, and thus which could be used to describe textures with automatic annotation tools in
the frame of the MPEG-7 [2].

Although there is a lack of a standard de�nition for texture, we can say there is an agreement from
several works [3, 4, 5] that a texture can be described by geometrical features related to the scale, the
orientation and the regularity of the local features, called sometimes textons [6, 7]. The most successful
attempts to describe textures have been based on the analysis of frequential information with large set of
�lters, followed by heuristic functions de�ned ad-hoc to infer the geometrical features. In this paper we
propose to work just on those �lters that allow to directly detect the image blobs and their geometrical
features. To this end, we assume an image is a set of Gaussian blobs with its speci�c properties, as it is
done by Lindeberg in [8], and close to the Marr's primal sketch [9].

According to the previous assumption a texture image can be described through the description of
its blobs and their attributes. Blob attributes are shape (given by its width and its length), contrast,
orientation (in case it is elongated) and location in the image. We will denote this representation as the
blob decomposition (BD) of an image.

As it will be shown, such a representation is enough to characterize textures, but it is still far to
be suitable for browsing or searching applications. To go further in this sense we propose to work on
blob groups instead of just working on blobs. We will de�ne a blob group as a set of perceptually similar
blobs, i.e. blobs sharing similar geometric properties. We will denote this representation as the blob group
decomposition (BG).

In the attempt of bridging the semantic gap, using BG to build image descriptions can present
interesting properties. Firstly, it is a Non-Subjective description, that is linked to geometric image
properties which can be quanti�ed, and not just numerical representations correlating with subjective
judgements, such as coarse or �ne. Secondly, it is a Semantic description, that can be obtained for
each blob group, since linguistic terms describing the geometric properties shared by the blobs in this
group are easily derived, i.e., "dark 45o-oriented blobs". Finally, the description is hierarchical, since
the combination of blob groups may allow to derive linguistic terms on a higher level, i.e., a "chequered
pattern" from two blob groups formed by elongated blobs with orthogonal orientations.

In section 2 we propose a complete method to automatically obtain the BD, based on the blob detection
procedure of Lindeberg [8]. In section 3 we propose a uniform blob space where distances rely on similarity
of blob attributes. This space is the basis for the blob grouping procedure presented in section 4, based
on the NCuts clustering technique. Finally, examples and applications of both representations are given
in section 5.

2 Blob detection in scale-space images
To decompose the image in its blobs we have focused on the use of di�erential operators in its scale-space
representation as suggested in [8], where a blob detector which suits our purpose is de�ned. All the blobs
of the image are supposed to be Gaussian-like and will be characterized by their width, w, their length,
l, the orientation of the major axis, θ, and their contrast, c. The aspect ratio, ar, and the area, A, can
be de�ned from these attributes as ar = l/w and A = l · w.

The blob detector is based on Laplacian of Gaussian �ltering of the scale-space representation of
the image de�ned by Lσ(I) = I ∗ G(·; σ). In order to automatically detect the scale of the blobs, the
normalized di�erential Laplacian of Gaussian operator, ∇2

normLσ = σ2∇2Lσ is used, so that the centers
of the Gaussian blobs are given by extremes over scale and space of ∇2

normLσ, and their scale is given by
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the scale at which the extremum has been achieved, denoted as sLoG. The value of the extremum gives
information about the contrast of the blob and its sign tells whether the blob is bright or dark.

In case the blob is not isotropic and thus has two di�erent characteristic lengths σ1 and σ2, the
maxima of ∇2

normLσ is achieved at a scale proportional to √σ1σ2, but no information about the values
of these two characteristic lengths is given. Therefore, some other measure must be considered to obtain
the shape of elongated blobs.

For this purpose, Lindeberg introduced a di�erential entity, the windowed second moment matrix
(WSMM ). This operator is meant to study the grey-level structure around a point q of the image, and is
de�ned by

µL(q) = Eq

(
L2

x LxLy

LxLy L2
y

)
(1)

where Eq denotes an averaging operator centered at q = (x, y)T ∈ R2.
This operator has already been used in the de�nition of texture features [10] but as a local structure

descriptor applied to all points of the image and not for blob shape detection. The information given
by the WSMM is easily interpreted in terms of its eigenvectors and eigenvalues: since this matrix is
positive semi-de�nite, the equation (ξ − q)T µL(q)(ξ − q) = 1 de�nes an ellipse. The orientation of the
major semi-axis of the ellipse is given by the eigenvector corresponding to the smallest eigenvalue, and
the lengths of the semi-axes are given by the square root of the inverse of the eigenvalues. Thus, the
aspect ratio and the orientation of the blob are given by

ar =
√

λ2
λ1

θ = arctan( v2
u2

) (2)

where λ1 and λ2 are the eigenvalues of the WSMM in decreasing order and (u2, v2) are the coordinates
of the eigenvector corresponding to λ2.

The calculation of WSMM involves two scale measures, the integration scale (s), the scale of the
averaging operator, and the derivation scale (t), the scale of Lσ or smoothing scale. The choice of these
two scales can widely vary the results [11]. A complete scheme for the calculation of the suitable scales is
proposed in [8], but the implementation of this method is quite costly, in other works by the same author
several shortcuts have been proposed to deal with this problem in speci�c applications [12, 13]. In our
work, the characteristic size of the blob is close to the value of sLoG. Therefore, the integration scale is
set to be proportional to this characteristic value: s = γ1sLoG. The scheme proposed by Lindeberg to
calculate the derivation scale is based on an anisotropy maximization criteria in order to compensate the
shape distortion due to isotropic smoothing. Nevertheless, in our approach, which is meant to be able to
deal with highly non-Gaussian blobs, another criteria is chosen, since we consider it is more suitable to
work with the scale-space representation of the image corresponding to the scale of the blob. By doing
so, the smoothing is performed at a scale which is a compromise between the conservation of the blobs
shape and a smoothing that enables a more Gaussian pro�le of the blobs. Thus, the two scales are chosen
to be proportional to sLoG with s = γ1sLoG and t = γ2s = γ1γ2sLoG.

At this point the area of the blob is still unknown, since the blobs size can not be deduced from
WSMM. In previous work this has been solved by �xing the area of the blob proportional to s2

LoG, but
we propose to set sLoG as the width of the blob instead. This assumption does not modify the results in
case of isotropic blobs and it improves the results in case of elongated blobs, where it is the width of the
blob which tunes better with the �lter. Therefore, the blobs width and length are de�ned by w = sLoG

and l = ar · sLoG. In �gure 1 the results of applying this criteria are shown. As it can be seen, in case
the blobs are highly anisotropic the assumption w = sLoG improves the results.

Given an image I, the detection and characterization of its blobs yields to its Blob Decomposition
BD, which is represented by a M × 6 matrix B, whose rows are de�ned as

BI
i = (x, y, w, l, θ, c) (3)

where (x, y) denote the location of the blob in the image and c gives the contrast of the blob. The BD
for a natural image is shown in �gure 2, where blobs are superimposed on the lightened image.

5



Figure 1: Results of blob detection and shape estimation for Gaussian blobs. The image is lightened and
the blob's contours are superimposed. (a) Original image. (b) Area of the blob equal s2

LoG (c) Width of
the blob equal to sLoG.

Figure 2: BD for a natural image (a) original image (b) bright blobs (c) dark blobs

3 A uniform blob space
Once the Blob Decomposition of the image is obtained, we aim to group its blobs according to the
similarity of their perceived attributes. We propose a uniform space, where the distance between two
points is proportional to the di�erence between its perceived attributes, as uniform spaces are de�ned in
color science [14]. To derive this blob space we will �rstly de�ne the two axes corresponding to shape.
Afterwards, orientation and contrast will be introduced to yield a three-dimensional space.

The simplest way to represent blob shape is by directly associating the two shape attributes of the
blobs, resulting in a length-width (l-w) space. In �gure 3.(a) some blobs are represented according to
these coordinates. As we are dealing with digital images, both attributes of the blobs start at a value
of 1 pixel and therefore there is a shift between the origin of the coordinate system and the smaller
possible blob. This problem can be solved by introducing a logarithmic scale so that the blobs with these
initial values are at the origin of the axis, which suits better our purposes. The representation of blobs
in logarithmic scale is shown in �gure 3.(b).

At this point, let us notice that half of the blobs that are plotted are not valid, since by de�nition
the width is the shortest of the two characteristic lengths of a blob, and blobs plotted in this plane are
supposed to have the same orientation. Thus, blobs in each side of the axis de�ned by the isotropic blobs
are redundant (see �gure 3.b). To remove these blobs we propose to rotate the axes so that isotropic
blobs lie in the vertical axis, and just leave those remaining in the �rst quadrant. This transform will
link the new axes to log(ar) and log(A) features, as shown in �gure 3.(c).

Once shape attributes have been associated to speci�c axes on the blob space, now we have to add the
orientation and the contrast. Considering that isotropic blobs, i.e. non-oriented blobs, are situated just
along the area axis, it seems natural to introduce the orientation of blobs as an azimuthal coordinate of
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Figure 3: Blob spaces. (a) l-w space, (b) log(l)-log(w) , (c) log(ar)-log(A) space, proposed in this work
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Figure 4: Blob space in cylindrical coordinates

a cylindrical space, that organize the orientation di�erences along a ring centered on the area axis, this
will be obtained by doubling the angle. Finally, in order to represent both bright and dark blobs in the
space but separately, we propose to use the sign of the contrast on the vertical axis, with bright blobs
corresponding to positive values of the contrast.

Hence, the radial, azimuthal and vertical coordinates, (r, z, φ), of this blob space will be related to
aspect ratio, orientation and area of the blob, respectively. A graphical representation of this space can
be seen in �gure 4.

According to all the considerations we denote as U the non-linear function transformation that takes
to the new space, U : R4(w, l, θ, c) −→ R3(r, z, φ), and given by

U(w, l, θ, c) = (log(ar), sign(c) · log(A), 2θ) (4)

In �gure 4 we show the location of several groups of blobs in the proposed space. The de�nition of the
space implies all blobs are represented in a cone delimited by an angle α = π/4. The cones are drawn in
�gure 4 as the shaded volume where points representing blobs are contained.

Although this space seems to be obtained from computational considerations only, there are perceptual
reasons that show it can be considered as a uniform blob space. It has been shown [15] that the evaluation
of the area in the human visual system is performed by a speci�c mechanism, and not by the multiplication
of the dimensions of the ellipse. Equally, it is also demonstrated [16, 15] there is some mechanism in
charge of evaluating the aspect ratio of 2-D shapes. Furthermore, the independence of evaluation of the
area and aspect ratio has also been demonstrated in [17].

The similarity property of this uniform space will provide meaningful interpretations in a perceptual
sense. In �gure 5 we show several interesting groups of blobs that could be described by parametric
functions.

Blobs sharing the same shape and area but di�erent orientations will form a group laying in a ring or a
part of a ring (if the orientation is in an interval) around the vertical axis. The distance due to di�erences
in orientation increases with the aspect ratio of the blob, as does the radius of the ring. In �gure 5 points
corresponding to several blobs with same shape but di�erent orientations are plotted forming an arc.

Isotropic blobs lie in the vertical axis of the space, making groups of isotropic blobs with similar area
become quite clear, as shown in �gure 5.

Blobs having similar area and orientation but variable aspect ratio lie in a line perpendicular to the
vertical axis, as the area is constant.

Finally, blobs having the same width and di�erent length lie in lines forming an angle of α = π/4 with
the vertical axis. This group of blobs often appear when the calculation of the WSMM underestimates
the anisotropy of the blob. Equally, blobs with the same length but with di�erent width lie in lines
forming an angle of α = − π/4 with the vertical axis. Both cases are illustrated in �gure 5.
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Figure 5: Groups of similar blobs and their representation in the Blobs' Space

4 Blob grouping
As we have seen in previous section groups of blobs with similar properties form meaningful clusters.
However, these clusters will not be always given by gaussian distributions in the space, but they can
be given by parameterizable shapes, such as rings, lines or planes. This is the reason why we use the
Normalized Cuts algorithm [18] as the basic clustering technique to extract the blob groups.

4.1 Normalized cuts
This method is based on taking the collection of points as the nodes of a graph whose edges are the
degree of similarity between points, called weights. The method divides the whole set of points into two
disjoint sets minimizing the Normalized Cut, which is a measure of the weights that have been removed
to perform the cut. A label yi ∈ {−1, +1} is assigned to each point of the set, corresponding to the two
sets that have been formed. The cutting is performed recursively as long as the cost of cutting is less
than a �xed threshold.

Taking the set of blobs as the nodes of the graph, we need to de�ne the weights wij between points xi

and xj . As the space has been designed uniform, the Euclidean distance is used and the weights matrix
is de�ned as wij = e−

‖xi−xj‖2
σ2 where xi is the position of the point corresponding to the attributes of

the i − th blob. Assuming the labelling vector y can take real values, it can be obtained by solving a
generalized eigensystem. In [19] a version of the Normalized cuts is presented which avoids sensitivity to
outliers, which suits better our data.

4.2 Results
As we introduced in section 1 we propose to build a semantic description of a texture image based on the
blob group decomposition, denoted as BG, that we propose to obtain from the computation of

NCut(U(BI)) (5)

where the resulting clusters can be interpreted as an image decomposition where each group of blobs
can have a speci�c meaning. In �gure 6 we show the application of the derived algorithm to the original
texture image given in (a) together with its BD in (b) and (c), where bright and dark blobs are separated
with a legibility purpose. Its representation in the uniform space and its BG as the result of the NCut
algorithm are shown in �gure 7.
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(a) (b) (c)

Figure 6: BD of original image in (a). Bright blobs are represented in (b) and dark ones in (c)
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Figure 7: BG of the image in �gure 6.(a) on the Blob Space and on the image.

The results show how the method correctly detects there are two kind of bright isotropic blobs and
only one kind of dark blobs which are not Gaussian-like but which are well approximated.

The BG is also computed for another texture image in �gure 8. The analysis of the detected blobs in
�gure 9 demonstrates how the blob detector works in images where blobs are not isotropic and with noise,
and how the ellipses (or detected blobs) cover the di�erent kinds of blobs, depending of their attributes.
It can also be seen how the orientations of the blobs are well separated.

Despite having �ltered the image by isotropic �lters, and thus having explored the local grey-level
around blob centers in an isotropic neighborhood only, it can be appreciated how big dark blobs are well
detected. This is due to the assumption of equal width between the blob and the �lter which has detected
the presence of a blob.

In fact, elongated blobs with a high aspect ratio are approximated as the addition of elongated blobs
with smaller values of ar. The detection of those elongated blobs and therefore the texture decomposition
can be improved by introducing a re�nement step on the selection of the �lters. If the image was �ltered
by elongated �lters with the appropriate orientation the elongated blobs with high values of ar would be
better detected.

5 Applications
In this section we want to show three di�erent applications where the proposed algorithm and its results
can provide interesting contributions.

(a) (b) (c)

Figure 8: BD of original image in (a). Bright blobs are represented in (b) and dark ones in (c)
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Figure 9: BG of the image in �gure 8 on the Blob Space and on the image.

Figure 10: Original Images at the top and the corresponding synthesis from the BD at the bottom.

5.1 Synthesis of texture images
In order to show the completeness of the proposed decomposition we show in several examples the
capability of performing image synthesis just from the BD representation. In �gure 10 we show four
original images on the top, and the corresponding synthesis from the BD derived from each one, at the
bottom. The image synthesis is obtained by the addition of Gaussian kernels with the attributes speci�ed
by the BD.

The results of the reconstructed images are shown in the same �gure, and it can be seen the loss of
information of the structure of the image is not important. Furthermore, the irregularities of structured
patterns are well maintained in the reconstructed image, which is not common in frequential decomposi-
tions of images.

5.2 Coloring gray-level texture images
The information provided by the BG of the image can also be used to color the images according to
the attributes of the blob groups. In �gure 11 results of this coloration are shown. This application is
particularly interesting for image design.

Figure 11: Image colorations based on the BG of the images
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Original Blob group decomposition

PBC [4 1 4 3 3] [4 1 4 2 2] [4 1 4 1 1]

PBC [4 1 4 3 3] [4 1 · 3 3 ] [4 4 · 4 4] [2 1 · 1 2]

Figure 12: (a)Texture images that share the same PBC descriptor PBC = [4 1 4 3 3]. (b), (c) and (d)
show the images decomposition

5.3 Texture image description based on the BG
As it has been said, the direct correspondence between the BG that is given by the method and a
description that could be given by human subjects asked to describe the images in terms of their blobs
is one of the most interesting aspects of the texture image representation presented here.

Given the BG of an image, its description can be given in terms of the features of the blobs forming each
group, so that the size of the description for an image depends on the number of di�erent characteristic
elements forming the texture or its complexity.

Among the descriptors presented for the MPEG-7, the more similar to our goal is the Perceptual
Browsing Component [5]. This descriptor has 5 components: one for regularity, two for the dominant
orientations and two for the dominant scales. Even if this descriptor is known to be useful for texture
browsing it still has some limitations due to the fact that only 5 components are taken into account, with
a few possible values each. For instance, the two textures shown in �gure 12 have the same description,
even though one is basically formed out of circular blobs and the other has none. Hence, the PBC gives
the same description for textures that would receive di�erent descriptions by users.

In �gure 12 the BG of bright blobs of two images sharing the same PBC are shown. The values of
the PBC for the original images and for each image corresponding to a blob group are given below. The
description obtained from the BG is more complete than the one given by the PBC solely. For instance,
the decomposition of the �rst image shows that both sizes of bright blobs have the same orientation,
due to the position of the blobs. On the other hand, for the second image it is shown the two main
orientations correspond to di�erent types of blobs. It has to be taken into account only part of the
information contained in the BG is considered, and a new descriptor including the shape of the blobs or
more information about their contrast could be built.

6 Discussion
A uniform blob space where distances are meaningful from a perceptual point of view has been presented.
This space is useful as a basis to group similar blobs in texture images, which can provide an explanation
of the image in terms of its attributes. Experimental results on texture image synthesis show the com-
pleteness of the proposed decomposition. Therefore, we can conclude this image representation presents
two interesting properties: it is compact in terms of space cost, and it is non-redundant since most of the
image points belong to a low number of image blobs whose attributes are known. This is an advantage
with respect to other wavelet or �lter-based decompositions where redundancy is a common problem.

As further research we propose this uniform space and the grouping process as a previous step for a
�lter selection procedure that can provide the attributes to design a set of �lters which can improve the
detection of elongated blobs, which is still a drawback in general blob detection. The improvement on
the blob detection can allow to extend applicability to other visual tasks, such as saliency detection.
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