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Abstract. One main process in Computer Vision is image segmenta-
tion as a tool to other visual tasks. Although there are many approaches
to grey scale image segmentation, nowadays most of the digital images
are colour images. This paper introduces a new method for colour image
segmentation. We focus our work on a topological study of colour dis-
tribution, e.g., image histogram. We argue that this point of view bring
us the possibility to find dominant colours by preserving the spatial co-
herence of the histogram. To achieve it, we find and extract ridges of
the colour distribution and assign a unique colour at every ridge as a
representative colour of an interest region. This method seems to be not
affected by shadows in a wide range of tested images.

1 Introduction

Image segmentation is a useful tool, as a prior step, on quite computer vision
tasks and, in this sense, an accurate and fast segmentation is required to work on
real problems. On natural segmentation tasks, colour is a visual cue which hu-
mans use to differentiate between several objects on real world. Moreover, some
methods reinforce this cue with the spatial coherence to distinguish between ob-
jects of an image. This paper proposes a method for colour image segmentation
without the spatial coherence and its viability in real image segmentation. Al-
though we are focused on the above conditions, the method can be extended to
introduce spatial information.

On existing literature we can find some different methods focused on colour
segmentation. A survey of these methods can be read on [1] and [2]. We are
interested on the segmentation process as a topological analysis of the colour
distribution. In this sense the existing method that best suit this model is the
mean shift algorithm [3,4]. It is focused on finding regions with high density
and join different local maxima by detecting saddle points. But, whereas mean
shift works under a statistical point of view by finding the modes of a density
function, we propose to find meaningful information under a topological point
of view by taking a colour histogram as a 3-dimensional landscape. To achieve
this topological segmentation, we propose a two step algorithm. First we apply
a creaseness algorithm to enhance interest regions and discard regions of a low
interest and, second, we propose an algorithm to find meaningful ridges from the
relevant information in the creaseness values of the colour distribution. These
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ridges will represent the most representative colours, or dominant colours present
in the image.

The paper is organized as follows: section 2 introduces the method and justifies
the ridge concept; section 3 introduces our two-steps algorithm;. Section 4 shows
some results, discussing the parameters in the operator, and conclusions and
further work can be found on section 5.

2 Method Outline

A grey-scale NxM image can be understood as an NxM landscape using grey
values as height. What we propose is to extend this idea at our 3-dimensional
space (colour histogram). The height value is explained, in our case, by the
number of occurrences of every colour in the image, whereas red, green and
blue in RGB space or hue, saturation and lightness on HSL, and so on, are the
spatial position of each colour in the landscape. Theoretically, a surface with an
homogeneous RGB colour should have just one RGB coordinate in its histogram.
The problem resides in incident light and on the own acquisition devices which
cause an elongated cloud (from shadows to saturation) in the RGB cube. What
we expect is to extract the most representative colour inside this cloud, ideally,
the original RGB value. We argue that inside this cloud exists a unique path with
maximum height, e.g., a ridge, which summarizes the whole cloud and keeps the
most representative colour.

The main idea of this ridge extraction is that ridges join different local max-
ima, e.g., local maxima which can be conceptually considered to belong to the
same topological structure, and this idea avoids a possible over-segmentation
and introduces the idea of spatial distribution coherence. Figures 1a and 1b il-
lustrates with an ideal example this concept of distribution coherence that we
include to achieve a good reduction of the RGB histogram. Figures 1c and 1d
show a simplified 2D example (just showing normalized Red and Green channels)
with a real image. In figure 1d we can guess a peak for every dominant colour
in figure 1c. In other words, there exist, inside the histogram distribution, an
intrinsic low-dimensional structure which summarizes the distribution preserv-
ing the spatial relationships between meaningful data. To find this structure we
need, first, to spurn non representative data and, second, achieve a measurement
that allow us to detect these possible highest paths without gaps due to local
irregularities. In this sense, mean shift procedure has its own method for saddle
point detection but has, as a main drawback, a high computational cost because
it requires multiple initializations and some prior knowledge is needed to reduce
the number of executions [5]. We propose to work on the topological definition
of ridge.

3 Topological Reduction of a Colour Distribution

As we told, we need to find a method to avoid the drawbacks related to acqui-
sition conditions. In this sense, the operator proposed in [6], named Multilocal
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Fig. 1. Different possible shape interpretations for m1 and m2. Without p1, p2 and
p3, is not possible to distinguish between (a) and (b); (c) a real image and (d) its
normalized Red-Green histogram, in spite of we really work with RGB histogram, but
it is, obviously, impossible to show a 4-Dimensional space.

a) b)

Fig. 2. (a) Geometry involved in the definition of k(p). A boundary C given by a
neighbourhood of size σ1. Divergence will be the dot product between vectors w̄ and
n.(b) Boundary C for a 3D (d = 3) regular grid according to the six nearest neighbours
(r = 6).

Creassenes Based on the Level-Set Extrinsic Curvatures Based on the Image
Structural Tensor Field (MLSEC-ST), in the following γ(D, σ1, σd) , gives us
a useful tool. The creaseness analysis associates to every point the likelihood
to be a ridge point and it is not affected by local irregularities. This operator
assigns, to every point p, a creaseness value k(p), by means of divergence calcu-
lation Div(wp) between normalized gradient vector wp and unit normal vectors
n1, ..., nr of the neighbourhood points. Multilocality, e.g., the fact because this
operator is not affected by local irregularities, is achieved by computing diver-
gence , not just on a point p, but taking into account gradient vectors of a
neighbourhood of size σi. Figure 2a shows a graphical example. We define the
creaseness operator on a d-dimensional space with r-connectivity neighbourhood
(see figure 2b) as:

k(p) = −Div(wp) = −d

r

r∑

k=1

wt
k(σi) · nk (1)

Finally to improve results, the Structural Tensor (ST) study allows us to get
a coarse measure of the degree of anisotropy to assign low creaseness values at
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zones of low interest like flat regions. ST performs an eigensystem calculation
of gradient vectors on the neighbourhood with a Gaussian kernel of standard
deviation σd and, as a result, enhances dominant directions of landscape. Then
we can summarize first step of our algorithm as follows:

C(D) = γ(D, σ1, σd). (2)

Where D is a given distribution; in this case, D is the image histogram.
Once we apply the creaseness operator, we have enhanced the meaningful

information of D, without gaps due to local irregularities, on a new distribu-
tion C. This information can be collected by a ridge extraction procedure as a
good descriptor of D and its spatial structure. In this sense, if we directly ex-
tract ridges on D, local irregularities will break ridges and it will cause different
interpretations where, if we maintain spatial coherence, there should be only
one.

3.1 The Ridge Extraction Algorithm

A good ridge characterization on a gray-scale image domain is introduced in [7]
and a comparison between main algorithms is introduced in [8] where the use of
γ(D, σ1, σd) is proposed.

Our method for ridge extraction is focused on a topological point of view.
If we want to cross a landscape, we consider that the way with lowest cost is a
ridge. When we walk across a ridge, we observe that mountain falls on both sides.
In other words, a ridge occurs where there is a local maximum in one direction
or, symmetrically, when a zero crossing on the gradient image occurs. It can be
translated, in discrete domain, as follows: x is a ridge point if is higher than all
its neighbours except one point x′ which is, in fact, a neighbour belonging to the
ridge. Hence, in a 3-dimensional r, g, b space with 26-connectivity neighbourhood,
we define R(C) = {r1, ..., rn}, the collection of ridge points, as:

R(C) = {x ∈ C | μ(x, C) < 2} (3)

μ(x, C) = � {y ∈ neighbourhood(x) | C(y) ≥ C(x)} (4)

This ridge operator is defined and discussed in [9]. But due to discrete domain,
this approach has some drawbacks as figure 3a illustrates. The main problem is
that ridges are broken and it entail an over-segmented image.

We propose a new definition of ridge operator on the discrete domain, by
beginning in points which are not affected by discretization, e.g., local maxima
(figure 3b). Hence, as initialization step, we find local maxima on C, λ(C) as
follows:

λ(C) = {x ∈ C | μ(x, C) = 0} (5)

Then, we just have to follow ridges starting on λ(C) points to avoid discretiza-
tion problems. It means that we follow a ridge from a local maximum until its
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a) b) c)

Fig. 3. (a) an example of discretization: r1 and r2 are ridge points. Theoretically r2

should be higher than all neighbours except r1, but the discreatization process takes
p1 and p2 as points higher than r2. (b),(c) A synthetic 2D creaseness image: (b) Local
maxima found in gray, e.g., λ(C). (c) Second step: Applying R(C) points labeled with
4 become ridge points. The next step should be to go to light grey squares labeled with
3.8, but we do not take these into account because belong to Ω. Then, we achieve a
straight ridge. On the next step just the central point of the square can be a ridge point.

ending. Let neigh(x) = {n1, ..., n26} be the neighbourhood of a point x. We also
define Ω(x, nj) = {ω1, ..., ωr} ,j = 1..26, as the set containing common neigh-
bours between x and one of its neighbours nj ; having r = 16 if dist(x, nj) = 1,
r = 10 if dist(x, nj) =

√
2 and r = 6 if dist(x, nj) =

√
3. Where dist(x, nj) is

the euclidean distance. Notice that neither x nor nj are included in Ω. Then, we
define the ridge points in a creaseness image C, as:

λz(C) = λz−1(C)
⋃

{n ∈ neigh(l) | l ∈ λz−1(C), μ′(l, n) = 0} (C) (6)

μ′(x, nj) = � {y ∈ Ω(x, nj) | C(y) ≥ C(nj)} (7)

Then, we add iteratively new points to λ(C). This process stops, in the pth
step, when ridge arrives on a flat region, achieving a new image with as many
ridges as mountains in C. Hence:

R(C) = λp(C) (8)

Once we find a new ridge point nj, we will not to take into account points
belonging to Ω(x, nj) as a possible ridge points on a further steps, in order to
avoid discretization problems and achieve a ridge of width equal to 1 as figure
3b and 3c illustrates.

As we told before, every ridge rj summarizes its mountain, lets said, Mj .
In a final step, we assign to every point x belonging to Mj the average colour
of rj . It implies that we must know the borders of Mj . At present, we do an
approximation by making a rgb cube partition with a Voronoi calculus from
ridges.
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a) b)

Fig. 4. Synthetic example: (a) Original image (b) Segmented Image

4 Experimental Results

With our topological colour segmentation we have achieve promising results.
Prior experimental results demonstrate that our operator is not affected by
shadows in a wide range of digital images. Furthermore, whole process works
at quasi-real time since it is able to process seven images per second on a stan-
dard PC.

When we deal with colour distributions we must choose a correct colour rep-
resentation between all well-known colour spaces. The most used colour space
is the RGB (red, green, blue) space, basically due to acquisition and display
devices which usually work with this three chromatic coordinates. Some other
possibilities would be perceptual colour spaces as CIELUV or CIELAB, [10] and
other device dependent spaces such as HSL or NRGB [11]. Since our topologi-
cal distribution reduction is a generic operator and is not focused on a concrete
colour space, we do not care on which space we perform its behavior analysis. As
for experimental use, we test it on RGB, CIELAB and normalized RGB spaces.
Figure 4 shows an example with a synthetic RGB image.

In order to evaluate the possibilities of our method, we used real indoor and
outdoor images, what allows us to better appreciate how exactly ridges are found,
because histogram of a synthetic image is not enough illustrative. Figue 5 shows
an example of the whole procedure. First, we take an RGB image (figure 5a)
and its histogram (figure 5b). Ridges found, and final partition of RGB cube,
can be seen on figure 5c. We can observe that ridges maintain the structure of
the original colour distribution. Finally, figure 5d shows the segmented image.

Figure 6a and 6b illustrates an example with a CIELAB image. The main
problem is that perceptual colour spaces require a calibrated image for a good
conversion from another space. Thus, to convert non calibrated images to a per-
ceptual colour space will imply some errors, and its viability should be evaluated.
What does not mean that RGB is the best representation for colour segmenta-
tion. Actually, RGB has two important shortcomings. First, the nonlinearity,
second, a high correlation between its components, and third, is not a percep-
tually uniform space, e.g., relative distances between colours do not reflect the
perceptual differences. HSV is a linear transformation from RGB, thus, inherits
its drawbacks. Finally, figures 6c and 6d show an example with normalized RGB
which tries to avoid the effects related to incident light.
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a) b)

c) d)

Fig. 5. Real image example:(a)Original outdoor image.(b) RGB histogram of a). (c)
Ridges found and RGB cube final partition. (d) Image segmented.

a) b) c) d)

Fig. 6. Real image example: (a)Original outdoor CIELAB image and (b) its segmen-
tation. (c)NRGB image and (d) its segmentation.

On these experiments the behavior of σi and σd has been checked, It seems
that results are robust against slight changes of σ1 and σd. In fact, results of
figures 4 and 5 have the same σi and σd values.

5 Conclusions

Our topological colour segmentation method attain good results on a wide range
of images even without using spatial coherence and is conceptually easy and
computationally efficient.

Nevertheless there are some things that must be improved. First, the RGB
cube partitioning is, right now, just an approximation of the best solution be-
cause delimitation between mountains is not correctly found. It means that, in
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some images, we incorrectly assign the colour of some pixels. To solve this prob-
lem we can do a classification of every coordinate of the histogram or, at least, a
further study of creaseness distribution, to find where exactly the borders of any
mountain are. Finally, we must study other colour spaces and the characteristics
of the segmentation, or what exactly implies to do a segmentation in each of
these spaces.
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