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Abstract

In this paper, we present a wavelet based approach which tries to automatically find the number of clusters present in a data set, along
with their position and statistical properties. The only information supplied to the method is the data set to analyze and a confidence level
parameter. Most of the usual methods for cluster analysis and unsupervised classification do not automatically determine the number of
clusters present in our data. Thus, the human operator has to supply the method with an a priori number of clusters which the algorithm
is expected to find. This fact leads to a difficult interpretation of the resulting clusters. In this paper we also show a practical algorithm to
implement this method on low dimensional data sets.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering techniques are widely used in pattern recogni-
tion to obtain information from multidimensional data sets
when the problem domain is totally unknown or the num-
ber of classes cannot be defined beforehand. In this sense,
they are opposed to semi-supervised or fully supervised
techniques, in which prior knowledge is exploited for train-
ing purposes in order to obtain meaningful data sets or
high performance classification procedures.

In general, clustering is defined as an unsupervised
machine learning process in which data is grouped accord-
ing to a notion of proximity. Therefore, each cluster is
defined as a set of data points that are ‘‘close’’ to each
other. Usually, clustering techniques are roughly divided
in: partitioning techniques (based on the iterative refine-
0167-8655/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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ment of a first random partition) (Kaufman and Rosseeuw,
1990), mixture model based methods (related to density
estimation processes) (McLachlan and Basford, 1988),
hierarchical clustering (hierarchical relationship among
data) (Hartigan, 1975; Holschneider and Tchamitchian,
1990; Kaiser, 1994; Kaufman and Rosseeuw, 1990; Koho-
nen, 1988).

However, most of the methods in the former taxonomy
do not produce a suitable estimation of the number of out-
put clusters by themselves and it has to be provided as
an input parameter. Regarding this last issue, several
approaches have been proposed for determining the num-
ber of clusters: cross-validation (Smyth, 1996), penalized
likelihood estimation (Sugiyama and Ogawa, 2001), per-
mutation tests, resampling and finding the knee of an error
curve (Tibshirani et al., 2003). But the complexity of most
of these methods is very high since they demand multiple
runs of the clustering algorithm.

As a result of the drawbacks of classical techniques,
another important line of work in clustering was born:
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robust statistics techniques. In particular, robust clustering
differs from the classical approaches in the fact that they
try to solve the following standard problems: (1) robustness
to the initialization (initial guesses and priors); (2) robust to
cluster volumes and (3) robust in front of noise and outli-
ers. However, few are the algorithms that are able to give
answers to all those problems. Recently, Yang and Wu
(2004) proposed a robust approach, similarity based robust
clustering (SCM), that was able to cope with those prob-
lems as well as outperform other well-known and high-
performance clustering algorithms such as fuzzy c-means
or possibilistic c-means.

In this paper we present a wavelet-based approach to
perform cluster analysis on multidimensional data sets,
pursuing to define a procedure or algorithm which only
works with the data to analyze and a confidence parameter.
We compare our method with classical K-MEANS, hierar-
chical clustering with automatic cluster determination and
the aforementioned similarity based clustering, SCM. We
provide synthetic experiments, and application to color real
images.

2. Related works and motivation

This section is devoted to give a brief overview of the
techniques we will use to compare our method with. We
will compare the results with three methods: the classical
K-MEANS clustering; hierarchical clustering with auto-
matic determination of the number of clusters using evalu-
ation graphs; and finally, the similarity-based robust
clustering. K-MEANS has been chosen because it is a stan-
dard well-known and well-studied method that allows basic
comparison. Hierarchical clustering with graph evaluation
has been chosen as a standard representative of agglomer-
ative techniques. In particular we have also included the
automatic search of the number of clusters, which will be
further discussed in the next subsection. Finally, a robust
all-purpose method is also compared. This method has
been chosen as a representative of the robust methods for
its proved effectiveness. Further details of the method are
given in the next subsections. The last subsection briefly
introduces the motivation of this work.

2.1. Finding the knee of an evaluation graph

Analysis of evaluation graphs is a classical technique for
finding the number of clusters in unsupervised learning. An
evaluation graph consist of a plot displaying the number of
clusters vs. an evaluation metric. Several methods are used
for this analysis: finding the largest magnitude difference
between two points, the largest ratio difference, the first
data point with a second derivative above some thres-
hold, . . . However, recently, a new method, L method, has
been proposed that is considered to obtain a good approx-
imation of the number of clusters.

This method splits the evaluation graph plot in two lin-
ear regression models (Lc,Rc). The crossing of both lines
determines the number of clusters. The goal is to minimize
the following expression:

RMSEc ¼
c� 1

b� 1
RMSEðLcÞ þ

b� c
b� 1

RMSEðRcÞ;

where RMSE stands for root mean squared error, b is the
maximum number of clusters, and c is the partition point.
Lc is the model that considers all the measures of the clus-
ters on the left side of the partition point c. Rc does the
same on the right side of the partition point.

This is a general method without parameters that is spe-
cially well suited to be used in conjunction with hierarchical
clustering, since the evaluation measure can be the same as
the one used for creating the hierarchical dendrogram.
However, the evaluation graph resulting from a hierarchi-
cal clustering is as large as the original data set, since it
treats every single data point as a cluster. In this situation
the representability of the knee of the L shaped curve is
very low. In (Salvador and Chan, 2004), they propose an
iterative refinement of the L-method by bounding the
upper number of clusters to 2 · c at each iteration, until
the method converges. Hierarchical clustering in conjunc-
tion with the L-method (hereafter, HIER) is used for com-
parison purposes with the new method we present in this
work.

2.2. Similarity-based robust clustering

Similarity-based robust clustering (hereafter, ROBUST)
is a newly proposed but effective technique capable of solv-
ing most problems in cluster analysis (Yang and Wu, 2004).
In particular, it solves the initialization and volume issues
by means of a self-organizing technique of the data.

The method is divided in two steps: The first step is the
correlation comparison algorithm (CCA). This algorithm is
a previous step to the main clustering core. In this step the
scale of clustering is fixed automatically by exhaustively
calculating the correlation between eJ ðxkÞcm

and eJ ðxkÞcmþ1

where

eJ ðxkÞcm
¼
Xn

j¼1

exp�kxj � xkk2

b

 !cm

; k ¼ 1; . . . ; n

for cm = 2m, m = 1,2,3, . . . If the correlation of this density
based estimator is higher than the 99%, we consider to have
a good approximation of the clustering scale. This consid-
eration is also proposed in (Yang and Wu, 2004). The sec-
ond step is similarity clustering algorithm (SCA). In this
step, the goal is to find the centers zi that maximizes the
similarity function Js(z)

J sðzÞ ¼
Xc

i¼1

Xn

j¼1

e�
kxj�zik2

b

� �c

; ð1Þ

where n is the number of data points and c is the number of
centers. The parameter b is defined as the sample variance
and c is the resulting scale obtained in the former step. The
initial data and centers are considered the same and the
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scheme is embedded in a maximizing framework, such as
gradient descent of fixed point of the derivative of the sim-
ilarity functional.

In this sense, this approach is a self-organizing tech-
nique, whose output is a set of cluster centers around which
the input data points are grouped. SCA is the iterative pro-
cedure that allows each center to converge according to the
similarity measure. The more similar the data is, the more
centers converge to the same point. The number of final
clusters is not known a priori, but the algorithm conver-
gence determines this number.

3. Wavelet transform

Multiresolution analysis based on wavelet theory intro-
duces the concept of details between successive levels of
scale or resolution (Mallat, 1998; Chui, 1992; Daubechies,
1992; Kaiser, 1994; Meyer, 1993; Vetterli and Kovacevic,
1995). Wavelet decomposition is increasingly being used
in many Data Processing topics (Starck and Pantin, 1996;
Rué and Bijaoui, 1996) and it is based on the decomposi-
tion of the data set into multiple channels according to
their local frequency content. Wavelet Transform decom-
poses data sets into a number of new sets, each one with
distinct frequential information.

The wavelet representation is an intermediate representa-
tion between the Fourier and the spatial representation. The
Fourier Transform represents the global frequency content
of the image, but it provides no information on the spatial
localization of these frequencies. However, the Wavelet
Transform gives simultaneous information on both the local
frequency content and the spatial distribution of these fre-
quencies. Since in Fourier space the base functions are sinu-
soidal, they extend throughout space and do not have
spatial concentration. A windowed Fourier transform can
be performed using windowed sinusoids, but the size of
these windows is the same, regardless of the frequency which
fills it. On the other hand, wavelets are concentrated around
a central point and so, as the windowed Fourier transform,
they have a high degree of spatial localization, but the
degree of concentration depends on the frequency content
of this wavelet function. High frequency wavelets are nar-
rower than lower frequency ones, and thus provide a sort
of adaptive base functions, suggesting a zooming tool.

3.1. Theory

We shortly present some outlines in wavelet transform.
We present one-dimensional formulas which can be easily
extended to the n-dimensional case.

Given a signal f(t), we can decompose it in the wavelet
space as

W m;nðf Þ ¼
Z 1

�1
f ðtÞwm;nðtÞdt; ð2Þ

where wm,n(t) are the wavelet basis functions defined by the
m and n parameters. The wm,n(t) basis functions are derived
from a function w(t) called Mother Wavelet which are de-
fined as

wm;nðtÞ ¼ 2m=2wð2mt � nÞ. ð3Þ

Using (3) and other constraints we obtain an orthonormal
wavelet basis (Daubechies, 1992). Parameter m stretches or
compresses the Mother Wavelet, leading to a narrower or
broader new function. Parameter n translates the Mother

Wavelet along t space. Therefore, all the basis functions
wm,n(t) have the same profile, i.e., the Mother Wavelet
w(t) profile, but dilated and translated according to para-
meters m and n respectively.

The inverse discrete wavelet transform is given by the
reconstruction formula:

f ðtÞ ¼
X

m

X
n

W m;nðf Þwm;nðtÞ. ð4Þ

In summary, the wavelet transform describes a transition
or an abrupt change at a given scale in the signal.

3.2. The à trous algorithm

In the discrete case, many of the wavelet transform algo-
rithms are not shift-invariant, which can compromise image
decomposition. In this work we need a shift-invariant dis-
crete wavelet decomposition for d-dimensional data sets.

We can use the discrete wavelet transform known as à
trous (‘with holes’) algorithm (Holschneider and Tchamit-
chian, 1990) to decompose our data into wavelet planes.
Given a data set p we construct the sequence of
approximations:

F 1ðpÞ ¼ p1; F 2ðpÞ ¼ p2; F 3ðpÞ ¼ p3; . . . ð5Þ
To construct the sequence, this algorithm performs succes-
sive convolutions with a filter obtained from an auxiliary
function named scaling function (ref. for further details).
We use a scaling function which has a B3 cubic spline pro-
file. In the case of a one-dimensional data set, the use of a
B3 cubic spline leads to a convolution with a mask made by
five elements being scaled up by 16: (1, 4,6,4,1). In the case
of a two-dimensional data set (an image), the convolution
mask is Starck and Murtagh (1994):

1

256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

0BBBBBB@

1CCCCCCA ð6Þ

and generalization to d-dimensional data sets is immediate.
As stated above, wavelet planes are computed as the differ-
ence between two consecutive approximations pl�1 and pl.
Letting xl = pl�1 � pl (l = 1, . . . ,nx), with p0 = p, we can
write the reconstruction formula:

p ¼
Xnx

l¼1

xl þ pr. ð7Þ
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In this representation, data sets pl (l = 1, . . . ,nx) are ver-
sions of the original set at increasing scales (decreasing res-
olution levels), are the multiresolution wavelet planes and
pr is a residual set. Parameter nx is the number of wavelet
planes. In our case, we use a dyadic decomposition scheme,
hence, the original set p0 has double the resolution of p1, p1

double resolution than p2 and so on. If the resolution of p0

is, for example, 10u (being u a spatial unity of measure),
then the resolution of p1 is 20u, the resolution of p2 is
40u and so on. However, note that all consecutive approx-
imations (and wavelet planes) using the à trous algorithm
have the same number of data points as the original data
set (working with images, we obtain the same number of
pixels), given that the à trous algorithm is an oversam-
pled transform (Vetterli and Kovacevic, 1995). The usual
Wavelet Transform decomposition schemes performs a
decimation on the data between consecutive planes, so
every wavelet plane contains fewer data than the previous
plane. In the à trous algorithm this decimation step is not
performed, so the amount of data is the same for every
wavelet plane, therefore every wavelet plane obtained by
the à trous algorithm has the same amount of data as
the original data set. This restricts the use of this particular
wavelet approach for applications such as data
compression.

4. Wavelet based model for cluster analysis

Since wavelet transform isolates features with different
frequency content, it can be useful to detect, discriminate
and localize clusters in multidimensional space.

Take a multidimensional data set, and place them in this
space as defined by a multidimensional density distribu-
tion. If this distribution is Gaussian-like, clusters are
located where point density is higher. Since the histogram
can be used to estimate the density distribution, it is clear
that clusters, i.e., multidimensional centroids, are located
around the highest histogram values. Given a multidimen-
sional histogram of a cluster, we can treat this histogram as
a function. Since any function can be interpreted from a
frequential point of view, we can see the relation between
clusters location and histogram frequency content: clusters
concentrated around a central point are high frequency
features in the multidimensional histogram, and wide
spreaded clusters are low frequency features. When per-
forming a wavelet transform of the multidimensional histo-
gram, these contributions are isolated in several wavelet
planes, and this isolation process is guided by the frequen-
tial content (i.e., statistical properties) of clusters in the
multidimensional histogram.

Hence, our goal is to find clusters in the wavelet space
instead of finding them in the multidimensional space, as
done by many cluster analysis algorithms. In this way,
the multidimensional space is decomposed into several
new spaces with their own statistical, i.e., frequential, prop-
erties. To detect and locate clusters, it is necessary to obtain
local maximums in every histogram wavelet plane. A local
maximum in a wavelet plane reveals the presence of a fea-
ture, related to the frequency associated with this plane,
which may be linked to a cluster, and thus indicates the
center of a candidate cluster. The wavelet plane where
the maximum is found is associated with the statistical
properties of this cluster. Once the contribution of the clus-
ter in this wavelet plane has been isolated, we can directly
measure its position, extension and profile, i.e., its statisti-
cal properties (mean position, covariance matrix, etc.).
Therefore, wavelet decomposition of a multidimensional
histogram can be useful for cluster detection, localization,
and approximate estimation of its statistical properties.

The automatic detection of clusters from the multidi-
mensional histogram has been studied by Letts (1978),
who defined clusters as local peaks of the histogram. This
approach is too conservative, because in an extreme situa-
tion a slight change in the number of pixels in a bin of the
histogram can determine a local maximum or not. In some
way, our approach can be seen as an improvement of this
method, since we try to find the embedded subclusters that
does not manifest as peaks.

4.1. Selection of candidates

Local maximums of the histogram wavelet decomposi-
tion are cluster candidates, but it is necessary to discrimi-
nate false clusters from the true ones.

For example, take a multidimensional data set defined
by a Gaussian distribution function, contaminate it with
white Gaussian noise, and calculate its multidimensional
histogram. In the wavelet planes obtained from the decom-
position of this histogram, we have coefficients which are
not contributions from the true cluster but from the histo-
gram quantization noise. These last coefficients may create
‘false alarms’ during the cluster detection process.

Thus, we need to detect and establish what coefficients
are related to a true cluster and what are false alarms. In
a wavelet decomposition, contribution of a signal feature
is present in several wavelet planes, and its position is
clearly linked to the true position of this feature. This
approach has already been used in (Starck et al., 1998) to
perform object detection. In contrast, coefficients due to
noise are not associated and cannot be present in several
wavelet planes. Hence, to obtain a true, significant feature,
we have to look for correlated coefficients through the
wavelet planes. Therefore, to isolate true clusters from false
alarms, we have to look for these correlated wavelet
coefficients.

The size of histogram bins, i.e., histogram resolution in
the d-dimensional space, is usually an important issue in
histogram-based procedures. High histogram resolution,
i.e., many histogram bins, defines a sparse histogram with
poor populated bins. On the other side, a small resolution
histogram, i.e., few histogram bins, implies highly popu-
lated bins and a smooth histogram but a small number
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of bins. If we take a high resolution histogram, bins will be
very poorly populated, which will introduce noise on the
histogram distribution and many local maximum wavelet
coefficients will not be associated to a cluster. On the other
side, low resolution histograms produces highly populated
histogram bins, but resolution of features in the d-dimen-
sional space is compromised. Some prior knowledge about
data distribution would be an advantage, but if we do not
know this information an optimum point between these
two situations has to be adopted.

In order to circumvent this problem we describe in the
following section a strategy to calculate the resolution at
which our histogram contains valuable information. As
shown in the following section, it is equivalent to the esti-
mation of a particular wavelet plane xl0

, and also equi-
valent to the estimation of an optimum size for the size
of histogram bins.

To find the clusters present in our data, we define the
following algorithm:

• Obtain the d-dimensional histogram h(p) of the data set
p = {pj(x1, . . . ,xd), j = 1, . . . ,np}, being np the number of
data points.

• Perform the wavelet transform of the histogram h(p),
obtaining the wavelet planes xi(x1, . . . ,xd), i = 1, . . . ,nx.

• Detect local maximums Ci,l on every wavelet plane xl,
l = l0, . . . ,nx, being l0 the initial wavelet plane.

• For every maximum Ci,l:
– Given a wavelet coefficient Ci,l which is a local max-

imum located in the wavelet plane xl (c1, . . . ,cd), we
look for local maximums Ci0;l�1 and Ci00;lþ1 in a win-
dow centered in the same position (c1, . . . ,cd) of the
Ci,l maximum but in the wavelet planes xl�1 and
xl+1, respectively.

– If maximums Ci0;l�1 and Ci00;lþ1 are found at both xl�1

and xl+1 and the value of the coefficient Ci,l is higher
than both Ci0;l�1 and Ci00 ;lþ1, then we take Ci,l as a real
cluster. Otherwise Ci,l is rejected as cluster.
Hereafter, this algorithm is called WAVCLUS.
We want to stress that this method is designed to

work with multidimensional histograms that present an
ellipsoidal profile with Gaussian-like density distribu-
tions. That is, it supposes that multidimensional clusters
are distributed around a central point, and that this den-
sity decreases when distance from the central point
increases.

The estimation of the initial xl0
wavelet plane from

which we start the detection of local maximums is
explained in the following section.

5. Optimum histogram resolution

The size of bins in which we discretize the d-dimensional
feature space is an important issue to take into account
when constructing a histogram. Narrow bins produce a
high resolution histogram, but they are poorly populated
and histogram becomes noisy. On the opposite, wide bins
produce smooth histograms, but resolution is poor. Thus,
a criteria has to be defined in order to find an optimum size
for the bins.

On a clustering task, one of the concepts that have to
defined is the minimum resolution at which data is consid-
ered to be statistically significant. For example, clustering
techniques based on hierarchical methods define the resolu-
tion of data at several levels. When choosing one of the
hierarchical levels, we are fixing the analysis resolution
level of our data. For example, in the K-MEANS method,
we fix a priori the number of clusters. If this number is
small the obtained clusters will be large clusters that
describe approximate general features. On the opposite, if
the number of clusters is high, the obtained clusters will
be smaller clusters.

One of the existing methods to analyze the optimum res-
olution of the distribution of our data in the d-dimensional
feature space are the Parzen windows. The estimation of
densities using Parzen Windows is performed counting
inside a window the number of data points in the d-dimen-
sional space. These windows may be defined in a very gen-
eral way, which may allow to perform some kind of
interpolation when using, for example, smooth Gaussian-
like windows. The characteristic size of these windows
define the resolution at which we estimate the density of
our data set in the d-dimensional feature space.

Using the variable resolution concept to describe the
density of our data into the d-dimensional feature space,
Yang and Wu (2004) describe a technique to estimate the
optimum resolution at which to describe our data set. They
use a general kernel to smooth data distribution at different
resolutions, and they perform a correlation between con-
secutive degrees of smoothing. When correlation value
becomes higher than a predefined cmin value or when the
correlation increment between consecutive degrees of
smoothing is negative, then they take that degree of
smoothing, i.e., the resolution of the smoothing kernel,
as the optimum resolution to describe data density.

The WAVCLUS method also allows us to estimate the
optimum resolution to describe our data set. When using
the à trous algorithm during the multiresolution wavelet
decomposition process, we smooth the original data using
kernels of increasing size. We obtain a set of approxima-
tions pl of our original data set at decreasing resolutions.
The differences between these consecutive approximations
pl are the several wavelet planes xl. Similarly to the previ-
ously described (Yang and Wu, 2004) method, we may cal-
culate the correlation between consecutive approximations.
Looking at these correlation values we may estimate the
optimum resolution, i.e., the optimum xl0

wavelet plane,
at which to describe our data.

Hence, we may define the following procedure in order
to find the xl0

wavelet plane which corresponds to the opti-
mum resolution to describe our data set:
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• Construct the d-dimensional histogram using a small
enough sb size for the bins.

• Obtain approximations pl, l = 1, . . . ,nx and the wavelet
decomposition xl = pl�1 � pl of the histogram.

• Take l = nx.
• Calculate the correlation cl between consecutive approx-

imations pl and pl � 1.
• If cl > cmax then define l0 = l and finish, else decrement l

and goto previous step.

We note that we start the correlation analysis with the
smoother approximation, i.e., the pnx

approximation. As
Yang and Wu (2004) show in their work, this series of cor-
relation values has to be interpreted from the lower resolu-
tion approximations of our data up to the more similar to
the original data set. Thus, to find the optimum l0 value we
start taking l = nx and comparing pl with pl�1, pl�1 with
pl�2, and so on up to p0, which is the original data set.

The obtained xl0
wavelet plane is the one with the opti-

mum resolution to describe our data density. It implies that
the clusters probably present in our data set are greater
than this resolution size. Therefore, WAVCLUS method
has to search local maximums at lower resolutions, i.e.,
at wavelet planes xl with l > l0.

This procedure implies the size sb of the bins to construct
the histogram is not a critical parameter for the WAV-
CLUS algorithm (Fig. 1). We just have to take a small
Fig. 1. UML activity diagram for the WAVCLUS algorithm.
enough value for sb in order to avoid collapse important
features of the density distribution inside a single discrete
bin. For example, take we chose sb = 1 and that we obtain
l0 = 3. If we take sb = 2 we will obtain l0 = 2, and if we take
sb = 3 we will obtain l0 = 1. The explanation is that since
we take a greater size of the bins when incrementing sb,
the features becomes smaller in the new histogram and they
appear in a lower l0 plane. In this particular example,
sb = 3 is the maximum size for the histogram because we
will obtain l0 = 1, which is the lowest wavelet plane.

We want to note that the cmin value is the only free
parameter of the WAVCLUS method that the user has
to define prior to the clustering process. In fact, sb has also
to be defined but, as explained, the user has just to be care-
ful to take a small enough value in order to avoid discret-
izing too much the data set.

6. A practical application on low dimensional data sets

In the following sections we present the results obtained
when implementing the described WAVCLUS algorithm.
The algorithm used to perform the wavelet decomposition
is the à trous algorithm, using the filter in (6).

When implementing the above algorithm, some practi-
cal considerations on the implementation of the d-dimen-
sional wavelet transform should be taken into account.
When using the à trous algorithm to perform the wavelet
transform, each wavelet plane is described by (nb)d values,
where d is the number of dimensions in our d-dimensional
data set, and nb is the number of bins used to compute the
histogram (usually nb < 256). When d > 3, the (nb)d data
size is too large to be managed by real computers, and
some strategies have to be used in order to reduce the
amount of data. A partial solution could be reducing the
number of bins, for example using other wavelet transform
algorithms that includes decimation. A principal compo-
nent analysis to reduce the dimensionality of our d-dimen-
sional data set prior to histogram calculation could be also
very useful. Another solution would be to work only with
the non-zero values of the d-dimensional histogram. Sev-
eral computer considerations on the implementation of
the algorithm are discussed in Section 10.

7. Simulated data

7.1. Data generation

To test the behavior and accuracy of the WAVCLUS
algorithm, several synthetic data sets were created and clas-
sified by WAVCLUS, K-MEANS, ROBUST and HIER
methods. Each data set contains several clusters which
are created as Gaussian distributions in the multidimen-
sional space, with distinct location and standard deviation.
Several dimensions were used for the d-dimensional space,
being d = 1, 2, 3. Within each data set, we created three
clusters with different statistical properties to obtain clus-
ters highly influenced by neighbor clusters, i.e., clusters
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which share a range of the d-dimensional histogram and
can be considered as clusters embedded into other ones.
Every cluster has been formed by a different number of
points to measure the importance of cluster population in
the detection and estimation of cluster statistical properties
by the used clustering algorithms. For example, we created
a highly populated cluster (made by 90% of total number
of points) which presents a wide numeric range in the sev-
eral dimensions. Close to this primary cluster, we created a
second one (9% of points) with a different numeric range,
and finally a marginal cluster with very few points (only
1%) but highly concentrated. None of them, except the
highly populated one, can be located by the Letts local
maximum histogram method described above, since none
of them is a local maximum.
Fig. 2. Histograms of original image and the several wavelet planes wi

obtained from the wavelet decomposition of the initial histogram.

Table 1
Correlation between consecutive approximation data sets pl for one-
dimensional data set

p5/p4 p4/p3 p3/p2 p2/p1 p1/p0

0.967 0.974 0.996 0.999 0.999

Original data set is p0.

Table 2
Correlation between consecutive approximation data sets pl for two-
dimensional data set

p5/p4 p4/p3 p3/p2 p2/p1 p1/p0

0.931 0.938 0.988 0.998 0.999
7.2. Accuracy estimation

If we know to what cluster a data point has to be
assigned, the usual procedure is to construct a confusion
matrix and calculate the accuracy of the classification
method obtaining the percentile value of correct assign-
ments. The j index is a good indicator of classification
accuracy. From the confusion matrix, it can be obtained as

j ¼
np

X
k
xkk �

X
k
xkþxþk

n2
p �

X
k
xkþxþk

; ð8Þ

where xij is the number of points classified as class i but
really belonging to class j, xiþ ¼

P
jxij (sum of all columns

in ith row), xþj ¼
P

ixij (sum of all rows in jth column), and
np the number of points in the d-dimensional data set. The
closer to 1 is this number, the more accurate is our classi-
fication. If we performed a random classification using N

classes, we would obtain percentile indexes of correct clas-
sification for each class which would be around 100/N%.
For example, if we had only two classes, in a purely ran-
dom classification we would obtain 50% of correctly classi-
fied pixels, but in this situation j = 0. This value tells that
our classification is completely random. It shows that j is a
better indicator for classification accuracy of methods than
simple percentile values.

7.3. Results

Beginning with a simple one-dimensional histogram, we
created a data set with three clusters. The data set con-
tained 1,048,576 points (1024 · 1024), and the numeric
values ranged from 0 to 32, with a bin amplitude for the
histogram equal to one numeric value (thus obtaining an
histogram with 32 bins). The histogram obtained presents
a Gaussian profile with slightly modified wings owing to
secondary clusters (Fig. 2). In the first column of Table 4,
we show their statistical properties and the percentile num-
ber of pixels used to create this cluster. We decomposed the
histogram into four wavelet planes, i.e., nx = 4. Fig. 2
shows the histogram and its wavelet decomposition. We
can see that around x = 5, there is a clear peak in the first
and second wavelet planes, x1 and x2 respectively. Around
x = 25, there are also two peaks at the second and third
wavelet planes, which indicates that this cluster candidate
is a broader cluster than the one at x = 5. The central clus-
ter at x = 15 is clearly visible at the two last wavelet planes
and at the residual one.

As explained in previous section, in order to estimate the
initial l0 wavelet plane to look for clusters, we obtained the
correlation between the several approximation data sets pl.
We show these values in Table 1. For all synthetic examples
in this work, we take cmin = 0.98.

In this case, the p4/p5 correlation value, e.g., 0.967, is
lower than the desired 0.98 value. The following correla-
tion value p3/p4, e.g., 0.974 is higher than the previous
one, but lower than 0.98. The p2/p3 value is 0.996, which
is higher than 0.98, hence we define l0 = 2. It means that
we search for clusters, i.e., local maximums in the wavelet
planes, in wavelet planes xl with l = 2, . . . ,nx.

In the third and following columns in Table 4, we show
the results obtained by WAVCLUS, K-MEANS, HIER
and ROBUST methods, respectively.



Table 3
Correlation between consecutive approximation data sets pl for three-
dimensional data set

p5/p4 p4/p3 p3/p2 p2/p1 p1/p0

0.896 0.900 0.977 0.993 0.996

Fig. 3. Distribution of synthetic tridimensional data set in a tridimen-
sional RGB space.
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We proceeded similarly for a two and three-dimensional
sets, showing the results in Tables 7 and 8, respectively. For
the two and three-dimensional examples, we obtain l0 = 2
and l0 = 1 (Tables 2 and 3), respectively.

In Fig. 3 we show the distribution of the three-dimen-
sional data set in its corresponding tridimensional space.
In this figure, every dimension is displayed as a color axis,
which allows to display the tridimensional data set in a
RGB space. The axis values range from 0 to 32. In this fig-
ure we see the main cluster filling almost all the RGB space.
One of the secondary clusters are located near the white
vertex. We can also see the smaller cluster near the axis that
goes from the black to the red vertex. These two secondary
clusters are influenced by the presence of the main cluster,
that is, they share some of the data points.

7.4. Discussion

In the second column of Table 4, we observe that cluster
positions detected by the WAVCLUS method are exactly
the original ones, but we have to be careful about this
result. These clusters have exactly the same position as
Table 4
Position and standard deviation of three clusters created in a 1,048,576 points

True cluster WAVCL

Cluster statistics A x = 15, r = 5.0, p = 90% x = 15,
B x = 25, r = 2.0, p = 9% x = 25,
C x = 5, r = 1.0, p = 1% x = 5, r

Accuracy 82%
j Index 0.41

In the corresponding clustering algorithm column, the percentile number of poi
the number of pixels correctly classified. The last row is the value of j index fo
Character – means no meaningful data is obtained.
the true ones because the WAVCLUS method finds local
maximums in a data set (the d-dimensional histogram) that
is regularly sampled at values equal to the size of the bin
used to obtain the histogram. Therefore, if the true cluster
were located at a rational value (i.e., x = 15.3) we had not
detected it exactly in this position, but had found it on the
closer histogram bin value (i.e., x = 15). For a more accu-
rate estimation of the cluster centroid, we could adjust a
Gaussian profile or calculate a mass center using the points
surrounding the local maximum. In this example, WAV-
CLUS uniquely detects these three clusters, showing that
no other spurious or artifact clusters are present. The stan-
dard deviation of these clusters is relatively well estimated
by the WAVCLUS method, even taking into account that
it is an unsupervised method and that the two secondary
clusters are embedded into the highly populated one, which
hinders the estimation of the exact properties of the two
small clusters.

Even if we assume that only three clusters are present in
our data (which is seldom possible before an unsupervised
classification), the K-MEANS algorithm can be forced to
work with this number of clusters, placing it in a privileged
position in front of the other methods. Even in this favor-
able initial situation, K-MEANS fails to find the clusters
and their correct positions, and it distributes them almost
uniformly along the numeric values. This can be seen on
the standard deviation values calculated by K-MEANS
for these clusters, being them almost the same. On the limit
where the number of clusters is very high, the K-MEANS
algorithm would distribute them uniformly through the
d-dimensional space, finally obtaining a simple histogram
regular interval decomposition devoid of useful
information.

The percentile value of correctly classified pixels and
the j index are also shown in Table 4 for each clustering
method. These values show that classification accuracy of
WAVCLUS method is better than K-MEANS.

The HIER and ROBUST methods have some problems
for the one-dimensional data set. The ROBUST method
only detects one cluster, which is a not a meaningful result.
The HIER method overestimates the number of clusters,
which in this case determines 15 clusters (these clusters
are not shown to improve table readability and to save
paper space). The j index shows that the classification
unidimensional data set with dynamic range between 0 and 32

US K-MEANS HIER ROBUST

r = 5.5 x = 16.0, r = 2.0 * –
r = 1.5 x = 23.4, r = 2.5 * –
= 0.6 x = 9.4, r = 2.5 * –

52% 8% –
0.19 0.02 –

nts belonging to a concrete cluster is shown. The accuracy index row show
r every clustering method. Character * means no data is shown (see text).
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accuracy is extremely poor. Confusion matrix is not shown
for this method because it contains no useful information.
One should take into account that the ROBUST method
uses robust statistics for clustering determination. It
implies that some small subclusters can be taken as outliers.
On the other hand, the L-method used in the HIER algo-
rithm tends to overestimate the number of clusters, which
is an intrinsic property of the algorithm.
Table 7
Position and standard deviation of three clusters created in a 1,048,576 points

True cluster WAVCLUS

Cluster statistics x = (15,15), r = (5.0,5.0), p = 90% x = (15,15), r = (6.7
x = (25,25), r = (2.0,2.0), p = 9% x = (25,25), r = (3.8
x = (15,5), r = (0.5,1.0), p = 1% x = (15,5), r = (2.2,2

Accuracy 85%
j Index 0.51

Character * means no data is shown (see text). Character – means no meanin

Table 5
Confusion matrix for the WAVCLUS one-dimensional dataset
classification

True cluster

A B C

Classified cluster A 756,575 7078 0 763,653
B 78,840 87,294 0 166,134
C 108,304 0 10,485 118,789

943,719 94,372 10,485 1,048,576

Table 6
Confusion matrix for the K-MEANS one-dimensional dataset
classification

True cluster

A B C

Classified cluster A 441,736 168 0 441,904
B 188,407 94,204 0 282,611
C 313,576 0 10,485 324,061

943,719 94,372 10,485 1,048,576

Table 8
Position, standard deviation and percentile number of pixels for three cluster
range between 0 and 32

True cluster WAVCLUS

Cluster
statistics

x = (15,15,15),
r = (5,5,5), p = 90%

x = (15,15,15),
r = (7.3,7.3,7.4)

x = (25,25,25),
r = (2,2,2), p = 9%

x = (25,25,25),
r = (3.6,3.6,3.6)

x = (15,5,5),
r = (0.5,1,1), p = 1%

x = (15,5,5),
r = (2.3,2.4,2.4)

Accuracy 96%
j Index 0.82

Character * means no data is shown (see text). Character – means no meanin
The confusion matrix of the WAVCLUS and K-
MEANS classification algorithms, from which we have
obtained accuracy percentages and the j index, is shown
in Tables 5 and 6. In Table 6, where we show the confusion
matrix for the K-MEANS classification, there is great con-
fusion in the assignation of pixels to class A (first column),
i.e., many pixels assigned to classes B and C truly belong to
class A. The same confusion is shown by the WAVCLUS
method, but this is due to the high standard deviation of
class A. Clusters B and C are on the ‘Gaussian wings’ of
cluster A, and some points belonging to A have the same
values as the ones belonging to B and C.

Moreover, WAVCLUS method assigns around 7.6 · 105

points to cluster A, but K-MEANS assigns 4.4 · 105, being
the true number around 9.4 · 105. This shows that WAV-
CLUS assigns a closer number of pixels to class A than
K-MEANS, that is, K-MEANS shows a deficiency in the
number of assigned pixels. The same behaviour is shown
for classes B and C. From these observations, we can
conclude the less relevant a cluster is, the more difficult
to detect by the K-MEANS method.

In the two-dimensional data set, WAVCLUS method is
again better than K-MEANS. The HIER method overesti-
mates the number of clusters, similarly as with one-dimen-
sional data set, and determines 16 clusters. Its j index is
again close to zero. However, ROBUST method shows a
classification accuracy a bit higher than the WAVCLUS
method. As shown in Table 8, this method only detects
two the three clusters, which are the most populated ones.
But, in contrast to the WAVCLUS method, ROBUST
method performs a better estimation of the cluster statis-
tics. Standard deviations of clusters detected by this
two-dimensional data set, with dynamic range between 0 and 32

K-MEANS HIER ROBUST

,6.8) x = (16.8,10.7), r = (3.7,3.4) * x = (15.2,15.0), r = (5.0,5.1)
,3.8) x = (22.0,21.8), r = (3.7,3.7) * x = (25.2,25.2), r = (2.0,2.1)
.4) x = (11.1,17.1), r = (3.4,3.7) * –

47% 9.2% 96.8%
0.17 �0.01 0.83

gful data is obtained.

s created in a 1,048,576 points three-dimensional data set, with dynamic

K-MEANS HIER ROBUST

x = (17.5,12.0,12.9)
r = (3.7,4.2,4.6)

– x = (15.0,14.7,14.8),
r = (5.0,4.9,5.1)

x = (22.7,22.5,22.5),
r = (3.6,4.1,4.1)

– x = (25.0,24.7,24.6),
r = (2.1,2.3,2.2)

x = (11.5,16.6,15.9),
r = (3.5,4.2,4.6)

52% 2.9% 97.5%
0.21 �0.01 0.86

gful data is obtained.



Table 9
Correlation between consecutive approximation data sets pl for ball1

p5/p4 p4/p3 p3/p2 p2/p1 p1/p0

0.726 0.728 0.741 0.738 0.764
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method are better than the one estimated by the WAV-
CLUS, which produces a much better classification accu-
racy. Hence, the WAVCLUS method is better detecting
the real clusters, but ROBUST method is better determin-
ing cluster statistics.

In the three-dimensional data set, this behaviour
appears again, see Table 8. HIER method detects 26
clusters. ROBUST method detects only the two most
populated clusters, but their statistics are much better esti-
mated than by WAVCLUS method.

8. Real data

In order to test the accuracy of WAVCLUS in front of
real data, a supervised classification of two real images,
ball1 and ball2, see Fig. 4(a) and (b) respectively, was
performed.
Fig. 4. Real color images of two balls used as input to se

Fig. 5. Two different points of view in t
8.1. Classification process

We performed a supervised classification using WAV-
CLUS, HIER and ROBUST algorithms for the initial
unsupervised classification step usually present into super-
vised classification processes. We performed this supervised
classification in the usual two-step process: (i) perform a
unsupervised classification, obtaining a number nc of clas-
ses, and (ii) perform a final supervised classification step
using the previous nc classes as input, obtaining finally m
veral classification algorithms. (a) ball1 and (b) ball2.

he RGB space of the ball1 data set.



Fig. 6. Final supervised classification of ball1 for the corresponding clustering methods. (a) WAVCLUS method, (b) HIER method and (c) ROBUST
method.

1600 X. Otazu, O. Pujol / Pattern Recognition Letters 27 (2006) 1590–1605
groups as output. These m groups were previously defined
by a human operator as training regions for the supervised
classification. Six and seven groups were defined for the
ball1 and ball2 images, respectively.

8.2. Results for ball1

In Fig. 5(a) and (b) we show two different points of view
of the tridimensional representation of the data set in the
RGB space. In these images we can see the several clusters
present in our data set: a long and narrow yellow-green1

cluster, a pink cluster, a red cluster and two blue clusters.
These clusters correspond to the different colors of the
patches present in the ball. These visible clusters are the
ones that the clustering methods should detect.

For this case we take sb = 2, which leads to a tridimen-
sional histogram with 1283 bins. From the correlation val-
1 For interpretation of references in color, the reader is referred to the
web version of this article.
ues shown in Table 9, we obtain l0 = 2 because in this case
there is a negative increment of the correlation between p2/
p3 and p1/p2. We show in Fig. 6(a)–(c) the WAVCLUS,
HIER and ROBUST supervised classification results,
respectively.

The WAVCLUS, HIER and ROBUST methods auto-
matically obtained 7, 8 and 9 classes, respectively, during
the unsupervised classification process for this image. For
the final supervised classification images (see Fig. 6), we
show in Table 11 the j index and the percentage of cor-
rectly classified pixels.

In Table 10 we show the clusters detected by the WAV-
CLUS method during the unsupervised step. Since the fea-
ture space is the RGB space, the position and square root
of variances of the clusters are described in this space coor-
dinates. Comparing these values with the data distribution
in Fig. 5, we can see that every cluster detected by the
WAVCLUS method corresponds to one of the clusters
present in this figure. The axis in Fig. 5 range from 0 to
255. The first cluster corresponds to the black background



Table 10
Cluster statistics, position and square root of variance, obtained by
WAVCLUS for ball1 image

R G B rR rG rB

2 2 2 2.05 2.00 1.98
10 48 92 9.10 8.90 9.32
12 12 46 9.08 9.12 9.72
40 42 18 9.76 9.78 8.38
74 74 28 9.70 9.48 8.24

108 106 36 9.62 9.54 8.14
201 24 98 9.48 8.34 8.90

Table 11
j index and classification accuracy (percentage of correctly classified
pixels) for the supervised classification of ball1 image

ball1 WAVCLUS HIER ROBUST

j 0.87 0.81 0.59
Accuracy (%) 94.7 92.8 84.4
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which is not visible in this figure because is extremely con-
centrated at the origin, the second one to the more blue
Table 12
Confusion matrix for the WAVCLUS supervised classification of the ball1 im

ball1/WAVCLUS Background Yellow Dark b

Background 177,386 0 0
Yellow 4421 13,735 0
Dark blue 1975 0 7959
Red 1808 1494 0
Blue 666 0 0
Pink 1295 0 0

187,551 15,229 7959

Table 13
Confusion matrix for the HIER supervised classification of the ball1 image

ball1/HIER Background Yellow Dark blue

Background 178,602 0 6651
Yellow 4912 15,229 0
Dark blue 0 0 0
Red 1331 0 0
Blue 1299 0 1308
Pink 1407 0 0

187,551 15,229 7959

Table 14
Confusion matrix for the ROBUST supervised classification of the ball1 imag

ball1/ROBUST Background Yellow Dark blu

Background 177,790 0 1830
Yellow 1274 4811 0
Dark blue 0 0 0
Red 7937 10,418 6129
Blue 113 0 0
Pink 437 0 0

187,551 15,229 7959
cluster, the third to the small darker blue cluster which is
a bit difficult to see in this figure, the fourth to a half of
the big yellow-green cluster, the fifth to the other half of
the same cluster, the sixth to the red cluster, and the
seventh to the pink one. Hence, we can see that the WAV-
CLUS method is able to detect in a very acceptable fashion
the clusters present in our data.

In Table 11 we can see that WAVCLUS obtains the
highest j value, being HIER the following and ROBUST
the worst. Nevertheless, even being the WAVCLUS accu-
racy higher than the HIER method, we consider that the
difference between the WAVLCUS and the HIER j index
is not very significant, and that we should consider that
both methods obtain similar results. Tables 12–14 show
the confusion matrices of the corresponding methods when
comparing the supervised classification image with a truth
data set defined by a human operator. Looking at the final
supervised classification images in Fig. 6 we can see that
WAVCLUS and HIER obtains a good result, consistently
classifying every color patch of the ball in a separate
class. The HIER method does not obtain a good result
on the dark blue patch, which is confused with the dark
age

lue Red Blue Pink

0 0 0 177,386
685 0 0 18,841
203 0 0 10,137

8376 0 0 11,678
0 8601 0 9267
3 0 8669 9967

9267 8601 8669 237,276

Red Blue Pink

211 0 0 185,464
0 0 0 20,141
0 0 0 0

9056 0 0 10,387
0 8601 0 11,208
0 0 8669 10,076

9267 8601 8669 237,276

e

e Red Blue Pink

1632 0 0 181,252
0 0 0 6085
0 0 0 0

7635 4318 2971 39,408
0 4283 0 4396
0 0 5698 6135

9267 8601 8669 237,276



Fig. 7. Final supervised classification of ball2 for the corresponding clustering methods. (a) WAVCLUS method, (b) HIER method and (c) ROBUST
method.

Table 15
j index and classification accuracy (percentage of correctly classified
pixels) for the supervised classification of ball2 image

ball2 WAVCLUS HIER ROBUST

j 0.68 0.73 0.59
Accuracy (%) 82.0 85.7 76.7
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background and the blue patch. It can be seen on the con-
fusion matrix: the WAVCLUS wrongly classifies 28 dark
blue pixels as background pixels (Table 12); the HIER
method wrongly classifies the dark blue pixels as back-
ground (6651 pixels) and blue (1308 pixels) and does not
classify any pixel as dark blue (Table 13). The rest of
groups are approximately correctly classified by WAV-
CLUS and HIER. WAVCLUS confusion matrix is nearly
diagonal, while HIER matrix shows more confusion. Both
methods show some confusion on the background group.

The classification obtained by the ROBUST method
shows great confusion. Red and dark blue groups are con-
fused, as well as the result is highly affected by small shad-
ows in the rough surface. Confusion matrix is not nearly
diagonal because of the read and blue groups.

8.3. Results for ball2

For this case we take sb = 2. For this case we obtain
l0 = 2. We show in Fig. 7(a)–(c) the WAVCLUS, HIER
and ROBUST supervised classification results, respec-
tively.

The WAVCLUS, HIER and ROBUST methods auto-
matically obtained 8, 9 and 7 classes, respectively, during
the unsupervised classification process for this image. For
the final supervised classification results, we show in Table
15 the j index and the percentage of correctly classified
pixels.

Tables 16–18 show the confusion matrices of the corre-
sponding methods.

In this example, WAVCLUS accuracy is a bit lower
than HIER but we consider, similarly to ball1 example,



Table 16
Confusion matrix for the WAVCLUS supervised classification of the ball2 image

ball2/WAVCLUS C1 C2 C3 C4 C5 C6 C7

C1 151,289 357 53 0 0 82 0 151,781
C2 22 9522 1144 22 71 0 146 10,927
C3 62 504 15331 73 416 0 519 16,905
C4 0 0 231 10011 6 102 0 313 10,657
C5 0 0 98 903 3388 0 1 4390
C6 1776 11,345 5505 7666 9134 5092 2098 42,616
C7 0 0 0 0 0 0 0 0

153,149 21,728 22,362 18,675 13,111 5174 3077 237,276

Table 17
Confusion matrix for the HIER supervised classification of the ball2 image

ball2/HIER C1 C2 C3 C4 C5 C6 C7

C1 152,884 3528 1264 397 3159 3530 51 164,813
C2 167 15,734 2492 625 90 1631 477 21,216
C3 28 193 13,441 22 292 0 23 13,999
C4 1 1 915 12,363 2212 0 502 15,994
C5 0 0 39 27 6970 0 0 7036
C6 0 0 0 0 0 0 0 0
C7 69 2272 4211 5241 388 13 2024 14,218

153,149 21,728 22,362 18,675 13,111 5174 3077 237,276

Table 18
Confusion matrix for the ROBUST supervised classification of the ball2 image

ball2/ROBUST C1 C2 C3 C4 C5 C6 C7

C1 151,289 357 53 0 0 82 0 151,781
C2 0 0 0 0 0 0 0 0
C3 0 32 6513 4 65 0 7 6621
C4 0 27 3657 9666 204 0 117 13,671
C5 73 3861 7335 4608 9411 0 1539 26,827
C6 1787 17451 4804 4397 3431 5092 1414 38,376
C7 0 0 0 0 0 0 0 0

153,149 21,728 22,362 18,675 13,111 5174 3077 237,276
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that this difference is not very relevant. Their j index are
relatively similar, and they are greater than the one for
ROBUST method. From confusion matrices, we can see
that there is great confusion in C6 and C7 groups in all
three methods, and the HIER method also shows confu-
sion on the C1 group.

9. Conclusions

As can be seen from the synthetic examples, WAVCLUS
method usually detects the correct number of clusters and
obtains an acceptable statistics of these clusters. In com-
parison, the HIER method detects the wrong number of
clusters. In fact, it performs an overestimation, and its clas-
sification accuracy is low. On the other side, the ROBUST
method detects some of the clusters, but cannot detect the
less populated ones, i.e., it underestimates the number of
clusters; in contrast it better estimates the cluster statistics,
which produces a better final classification accuracy. It sug-
gest that WAVCLUS trades accuracy in the statistics of the
clusters for the estimation of the number of clusters. As a
result, due to its robustness, WAVCLUS is always applica-
ble to a vast variety of scenarios.

As shown with real data, which is used to perform a
supervised classification, both WAVCLUS and HIER
method show similar final classification accuracies, except
for the ROBUST method which shows a worse classifica-
tion accuracy.

Since WAVCLUS automatically determines the number
of clusters, it is more appropriate when the user has no a
priori information on the number of clusters present in
the images. It usually occurs when great amounts of data
need a first blind classification or fast analysis.

However, the WAVCLUS method requires to take into
account several advices. Since it works with the d-dimen-
sional histogram, the user has to be aware of any previous
histogram or data manipulation. Usual histogram stretch-
ing or expansion for image contrast improvement and visu-
alization are misleading and WAVCLUS data classification
of such images may supply meaningless clusters. If we
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regard the histogram as a mathematical function, the worst
situation is that after modifying the histogram some null
values are obtained, i.e., there are no data points assigned
to a concrete d-dimensional value. In this case, the WAV-
CLUS method detects the sudden change in the histogram
and considers it as an evidence of cluster. Another mis-
leading situation is encountered when the histogram is a
not-smooth function and it presents sudden changes (the
former situation would be a particular case), not necessar-
ily involving null values. This situation is usually linked to
histogram stretching. These sudden changes, usually man-
ifested as peaks or valleys, are interpreted as clusters by
the WAVCLUS method. The performance of classification
methods not based on histogram processing may be also
affected by these manipulations but not to the same extent
as the WAVCLUS. This is a drawback of the WAVCLUS
method, but with careful manipulation of the original data,
the method proves to be robust, reliable and accurate
enough when compared to other well established methods.

Therefore, the general wavelet based model we pre-
sented in Section 4 seems to be able to automatically detect
the number of clusters present in our multidimensional
data and estimate their statistical properties, working only
with the data to analyze and the minimum correlation
value supplied by human operator.

When using the à trous algorithm to perform the wavelet
transform, several drawbacks appeared on this particular
implementation (see Section 10 for computer issues), which
leads us to work only with low-dimensional multispectral
data sets. Other wavelet transform algorithms can be used
to reduce the number of data to process, but the described
general wavelet based model is the general guide to per-
form a cluster analysis of the data.

10. Computer implementation

As discussed above, there are several drawbacks on the
computer implementation of the WAVCLUS algorithm.
The reason of these problems is the dimensionality of data.
Given a multispectral (d-dimensional) data set, WAV-
CLUS has to compute the d-dimensional histogram.

10.1. Memory storage

Let the histogram contains 128 bins in every dimension,
hence the d-dimensional histogram has n = 128d data
points. For d = 3, n � 2.0 · 106 data points, and storing
them in floating point registers (4 bytes), requires 8 Mbytes.
We have to multiply this value to store every wavelet plane
and many temporary data arrays. In practice, this leads to
some hundreds of Mbytes of memory. If d = 4 the final
amount of data would really be unmanageable.

Therefore, it is necessary to reduce the amount of data
to store and to process. Two main strategies can be used:

• Reduce dimensionality of data.
• Store only useful data.
Reduction of dimensionality can be approached using
PCA analysis, only retaining the few most significant chan-
nels. Obviously, classification accuracy is reduced in a
significant way, and as much dimensionality reduction is
performed much lower will be the classification accuracy.
Many useful multispectral images, including hyperspectral
ones, are ‘dimensionally’ far beyond the computing possi-
bilities of WAVCLUS algorithm as presented above, but
another approach not based on dimensionality reduction
can be used.

Another possibility to reduce the amount of data is to
store only the useful histogram bins, in other words, the
non-null histogram values. Most of the bins are not popu-
lated by any data point, and these points are not used in
any computation, so it is not necessary to store this values
in memory. On the other hand, the higher the dimensional-
ity of the multispectral data set, the sparser the histogram.
In a extreme situation the histogram may be so sparse that
the histogram will not be useful, but this is the well known
problem of sparsity and dimensionality. This approach has
another limitation: we have to work only on the bins where
there is data, which means it is not possible to ‘interpolate’
values among them (wavelet transform does this). We are
forced to work all the time only on not null bins, limiting
the possibility to interpolate values among them to increase
data processing and localization of local maximums.
WAVCLUS would find centroids only on those multispec-
tral points present in the original data.

But in real data, multispectral centroids are very close to
data points, so it is very likely that many original multi-
spectral data points from our original multispectral image
to classify are very close or equal to centroids. Therefore,
to work only on not null bins does not has to be a problem.
This assumption is too strong for a general pattern analysis
method, but not so restrictive for real applications where
data is clustered around a central point (the multispectral
centroid). We have not used this strategy in this work, so
this is a point for future work and computer implementa-
tions of WAVCLUS.

This last approach could be very useful also to reduce
the extremely long CPU-time used by the general WAV-
CLUS algorithm.

As stated in previous section, the most feasible solution
to the general problem, seems to be the using of other
wavelet decomposition algorithms different to the à trous

algorithm.
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