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In color literature the changes in perceived color
caused by surrounding stimuli are referred as color in-
duction mechanisms.6 Smith et al.7 measured the rela-
tionship between spatial frequency and color induction
effects, concretely on assimilation and contrast induc-
tion mechanisms.

In this work we propose a mathematical model to unify
these two phenomena in order to represent their appear-
ance. To this end, the article has been organized as fol-
lows: first we give basic definitions about color induction
and its relationship with the perception of textures; sec-
ond, we give a brief overview of the wavelet analysis;
afterward and based on this mathematical model, we
propose a unified approach to represent color induction
effects; finally we discuss the results on how the model
acts on some examples and present some conclusions
and further research directions.

Color Induction
Land et al.8 showed how the color perceived by the hu-
man visual system of a surface does not match with the
physical light emitted by this surface. In this case, the
perceptual representation of the color of a point depends
on something more than just the physical properties of
that point. There are simple and well known examples
that easily show how color appearance or perceived color
can change depending on the image content.9

In color science, color induction refers to the change
in perceived color of a light source caused by a nearby
inducing stimulus.8,10 Land et al.8 demonstrated how a
test color appearance changes depending on its sur-
round. An example is shown in Fig. 1. On the right half
of the image, a color contrast effect makes the blue bands
seems more blue and the yellow bands more yellow.
However, on the left half of the image an assimilation
process induces color appearance tends to be greenish.

These induction effects can be generically explained in
terms of local spatial frequency of the image as has been
shown by Smith.7 In the first case, the low frequency prop-

Introduction
Modeling low level vision processes is one aim of com-
puter vision research. The goal of this research is to
build a visual front-end,1 that is a computational repre-
sentation of the image that provides us with the appear-
ance information of the image content. Appearance
depends on the observation distance, as well as consid-
erations on the physiological attributes of the human
visual system, since acquisition devices does not act
exactly as the human visual system does. In this article
we deal with the goal of building perceptual images. We
will focus on two aspects: color and spatial frequency.
There is some work dealing with these two aspects.2–5

The novelty of this work relies on the use of a unified
mathematical model to represent two common induc-
tion phenomena.

The representation of the appearance of color and spa-
tial frequency is relevant to many industrial applica-
tions where color texture images are involved. Several
production processes require the measurement of color
of non-homogeneous surfaces, such as tile, steel, tex-
tiles, printed paper or wood. In these cases, color can-
not be measured using common colorimetric devices,
since the integration of textured surfaces does not pro-
vide useful measurements of the color appearance; a
perceptual representation of the digital color image is
required in order to give the basis for further process-
ing based on this perceived color.

Perceptual Representation of Textured Images
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Chromatic induction effects depend, among others, on the frequency content of the observed region. Highly textured images
usually show some dominant frequency information, which produces prominent chromatic induction effects when observed. As it
is shown by some authors, the two chromatic induction effects, i.e., chromatic contrast and assimilation, can be computationally
simulated by blurring and sharpening operators, respectively. In this article, we present a first approximation to the perceptual
representation of highly textured images using a wavelet decomposition approach. Wavelet coefficients are modulated by a
weighting function, which performs either assimilation or contrast at every frequency level of the image. This wavelet approach
allows us to define both chromatic induction effects in a unified framework as a single mathematical operator.
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erty of the image test induces a chromatic contrast ef-
fect, that is, perceived chromaticity moves away from its
direct surround, which could be computationally inter-
preted as the application of a sharpening operator. Mean-
while, in the second case, the high frequencies of the
image patterns induce an assimilation effect, that is,
chromaticity moves toward the chromaticity of its direct
surround, which can be computationally represented by
convolving the image with a blurring operator.

Textures
Texture images are those images presenting certain ba-
sic elements, textons, which are repeated all over the
image forming global emergent patterns that can be ran-
dom or regular. They usually present a specific global
spatial frequency property. These basic texton elements
can be of different colors, and the perception of this color
is influenced by this spatial frequency properties.

Color texture images are usually used in manufac-
turing processes. Measurements of color on textured
images can be used to classify the production, to cali-
brate the production process parameters, to perform
color measurements or just to do quality control. Tex-
ture analysis and segmentation of its basic elements is
needed to deal with reliable color measurements, and
they has to agree with the judgments provided by hu-
man observers, therefore, an appearance representation
of this color texture images is required.

In this work we propose a model to build a tower of
images for a given image. Chromaticity properties of
these images have been modified considering two fac-
tors: the appearance from different observation dis-
tances, and the spatial frequency of the image content.
The changes are done in accord with the induction
mechanisms of the human visual system we have intro-
duced previously. This set of images is the basis for fur-
ther progress towards achieving an appearance based
analysis of these texture images.

Wavelets
Multiresolution analysis based on wavelet theory intro-
duces the concept of details between successive levels
of scale or resolution.11–13 Wavelet decomposition is
widely used in Image Processing and it is based on the
decomposition of the data set into multiple channels
according to their local frequency content. Wavelet
transform decomposes data sets into a number of new
sets, each one with distinct frequency information.

Given an image, I, its wavelet decomposition is de-
noted by:

    
WT f I I I Z z dzj n j n j n( ) ≡ ( ) = = ( ) ( )

−∞

∞

∫ω ψ ψ, , ,
*

(1)

where ψ∗j,n are the conjugate wavelet basis functions with
parameters, j and n, related to the scale and pixel posi-
tion respectively, and ωj,n(I) is the decomposition coeffi-
cient of image I of pixel n and for the j wavelet plane.
Given this decomposition, the original image can be com-
pletely recovered by integrating the coefficients with the
basis functions. Although this is the general approach,
in this work we will work on a particular case, it is the
à trous algorithm.14 In this algorithm, a sequence of
images ci is obtained by iteratively convolving these
images by a low pass filter h. The difference between
two consecutive images is the ωj wavelet plane associ-
ated to a certain resolution j. This compact ωj notation
for the wavelet coefficients refers to the set of all the
coefficients n, at a certain resolution j. Using a one-di-
mensional notation for the sake of simplicity, we can
see an initial discrete signal c0(k) (in the present case it
would be an image, I ≡ c0(k)) as a projection of continu-
ous function f(t) on a discrete V0 space spanned by φ(t)
basis functions, called scaling functions. The projection
on a subspace Vj  ⊂V0,
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is then an approximation of c0 at scale or resolution j.
The approximation of coefficients cj+1 at scale j + 1 can
be calculated by means of the discrete convolution of
coefficients cj at scale j with a filter h,

cj+1(k) = h(n) * cj(k + n2j), (3)

and the wavelet coefficients can be calculated as the dif-
ference between two consecutive scales,

ωj(k) = cj–1(k) – cj(k). (4)

This expression can be developed to show its recursive
nature as a function of the original image I and the fil-
ters hi:

ω0 = (I * h0) – I (5)

ω1 = ((I * h0) * h1) – (I * h0) (6)

  � (7)

ωj  = (⋅⋅⋅((I * h0) * h1) *⋅⋅⋅* hj) –  (⋅⋅⋅(I * h0) *⋅⋅⋅* hj–1) (8)

In our case we have used a B3 spline function for the
scaling function φ(t), which leads to a h(n) function that
can be approximated by a Gaussian kernel. The hi fil-
ters are resampled versions of the original h(n) kernel.
It is performed in order to accommodate, into the above
convolution of this kernel with the original I image, the
convolution of this kernel on the resampled cj(k + n2j)
data in Eq. (3).

The reconstruction of the original signal is simply the
sum of all the wavelet coefficients plus the residual ap-
proximation cN(k),

Figure 1. Synthetic image containing yellow and blue grat-
ings of different spatial frequency. Supplemental Material—
Figure 1 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the
date of publication.
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where N is the number of resolutions, usually called
wavelet planes, into which the original signal is decom-
posed. Every wavelet plane ωj,n(I) can be related to fea-
tures of a certain frequency ν(j).

From a computer vision point of view, the à trous al-
gorithm can be understood as a multi-scale Laplacian
filtering,15 where high frequency edges are separated
on low index coefficients and low frequency edges ap-
pear on high index coefficients.

Perceptual Wavelet Model
Computational modeling of chromatic induction effects
can be given by several image processing operators. Par-
ticularly, assimilation effects can be simulated by an
image blurring process.2 The practical effect of a blur-
ring process is that it reduces differences between neigh-
bor points, hence, a smoother image is obtained. On the
other hand, computational implementations of chro-
matic contrast can be simulated by an image sharpen-
ing process,3 which enhances differences between
neighbor points.

These computational approximations are performed
independently, that is, they are described as different
processes and implemented using different filters. Spe-
cifically, a blurring effect can be implemented using a
low pass filter, whereas a sharpening effect can be imple-
mented using a high pass filter. In this work, we present
a wavelet based chromatic induction model, which al-
lows to describe these two chromatic induction effects
in a single mathematical expression. In this model, chro-
matic assimilation and chromatic contrast are simulta-
neously performed depending on the frequency content
of the textured image.

Blurring and sharpening processes can be imple-
mented in wavelet space modifying the values of wave-

let coefficients. In particular, a blurring effect can be
approximated by reducing the value of some frequency
wavelet coefficients, mainly those related to the higher
frequencies. On the other hand, a sharpening effect can
be approximated by enhancing some wavelet coeffi-
cients. We can perform these blurring and sharpening
processes introducing a weighting parameter αj into the
wavelet decomposition of our image I,

    
I k l k l c k lj j N

j

N
, , , ,( ) = ⋅ ( ) + ( )

=
∑ α ω

0
, (10)

where (k,l) is the image coordinates of a pixel in the k-
th row and l-th column, and N the number of wavelet
planes into which the image is decomposed.

Parameter αj defines the specific process, i.e., blur-
ring or sharpening, to apply on the coefficients of the j-
th wavelet plane. When αj < 1 differences between
wavelet coefficients are reduced, thus a blurring pro-
cess is performed. When αj > 1, differences are enhanced,
thus a sharpening process is performed. Hence, the
model performs a blurring process on some wavelet
planes and a sharpening process on others, producing a
final image which shows both effects.

As explained above, and shown in several studies,2,7,8

for higher frequency features (lower j values) we have
to perform assimilation, i.e., αj < 1 and for lower fre-
quencies (higher j values) we have to perform chromatic
contrast, i.e., αj > 1. It suggests that parameter αj should
be an increasing function in j. As a first approximation,
a possible generic profile for the αi function is shown in
Fig. 2. Several mathematical expressions could be used
for this α j function, such as truncated Gaussians,
sigmoids, etc., but a correct evaluation of this function
should be obtained from psychophysical experiments.
Several psychophysical works7,16,17 show that the degree
of chromatic contrast presents a bound on its maximum
value. That is, there exists a maximum value αj ≡ C > 1

Figure 2. Parameter αj displayed as a function of wavelet scale j.
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for the enhancement factor to perform chromatic con-
trast on image features. If αj function had to mimic this
behavior, it should present some asymptotic behavior
towards this maximum C of contrast factor. A value of
C = 3/2 value has been suggested for region contrast
enhancement.2,9

Since the function αj presents a maximum at C > 1,
we can define a jthr threshold value, where αthr ≈  1, that
defines the frequency at which neither chromatic as-
similation nor chromatic contrast is performed. This jthr

threshold value defines the frequency which separates
the chromatic assimilation and chromatic contrast ef-
fects, that has been established as around 4 cpd (cycles
per degree).7

Taking into account all these properties, and as a first
approximation, the αj function can be modeled as

    

α j
thr

C

m j j
=

+ ⋅ −( ){ }1 exp
, (11)

where C defines the maximum enhancement factor ap-
plied to image features when performing chromatic con-
trast, jthr parameter is the induction threshold, and the
factor m defines the slope of the αj function around the
central jthr coordinate.

Since the jthr induction threshold value is defined in
visual angle unities, it can also be defined by a distance
xthr variable. Given an observation distance, the induc-
tion threshold, which is an angle, can be projected on
the image spatial coordinates. That is, given a feature
that present a visual angle β when observed at distance
d the feature size s is

s = d ⋅ tan β. (12)

This projection is measured on the image space as a
spatial measure, which in turn can be related to a pe-
riod, i.e., a cycle, of spatial frequency. By definition, a
wavelet scale j is related to a certain frequency ν(j). i.e.,
to a period

    
T j= 1

ν ( ) .

This relation is defined by

    
2 j s

sT
p

= = ,
where

  
s

sp

is the number of pixels in one frequency.period T, and sp

is the image pixel size. Since the induction threshold
value is defined as including 4 cpd in this wavelet space,
we can define

    
4 2 4T j s

s
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p
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The term jthr is the image wavelet scale associated to
the projection of 4 cpd when observing the image from
distance d.

Therefore, inserting Eq. (12) into Eq. (13), we finally
obtain

      
j

d
sthr

p
=

⎛

⎝
⎜

⎞

⎠
⎟log

tan
2

4 1�

. (14)

The jthr factor is the wavelet scale associated to the
ν(jthr) = 4 cpd induction threshold value when observing
an image with a pixel size sp from a distance d. Varia-
tion of the distance at which the image is observed is
defined as a translation of the αj function along the j
coordinate. To move away from the image is equivalent
to shifting αj towards lower frequencies (higher i val-
ues), since assimilation is produced only on the highest
image frequencies. This translation is performed by the
jthr term.

Thus far, we have defined C and jthr terms but no at-
tention has been paid to m. The m term defines the func-
tion slope around the central jthr induction threshold
value. As stated in Ref. [7], at a frequency of 2 cpd the
degree of chromatic contrast effect does not increase.
This implies that 2 cpd ≡ 2–1 ξ ν(jthr). On the other hand,
it is around 9 cpd where the influence of chromatic as-
similation reaches a maximum value, i.e., at an approxi-
mate frequency 2 • ν(jthr). In wavelet notation 2–1 ξ ν(jthr)
≡ ν(jthr – 1) and 2 • ν(jthr) = ν(jthr + 1), which means that
wavelet planes prior to and subsequent to the jthr plane
are close to the saturation values. It suggests m ≈  2,
and simple empirical experiments show that m ≈  2.5 is
a good approximation value.

Finally, we can define a wavelet based model to imple-
ment chromatic induction effects. Using Eqs. (14), (10)
and (11), we obtain

      

I k l

C

m i
k l c k l

d
s

i
i

N

N

p

( , )

exp log
( , ) ( , )

tan

=

+ ⋅ ⎛
⎝

⎞
⎠ −⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

⋅ +
⋅ ⋅=

∑
1 2

4 10 �
ω

. (15)

This expression simultaneously performs assimilation
and chromatic contrast depending on both the local in-
formation of the image and the observation distance. In
this model, distance d and pixel size sp are the only free
values that have to be defined a priori.

This induction model has been applied on the oppo-
nent color space, since this space has been shown4,18,19

to be one of the best suited to the human visual system.
Equation (15) has been applied to every channel of the
opponent color space. An open issue is whether all op-
ponent channels behave equally in front of similar
stimulus. As stated in these references each chromatic
channel does not present the same behavior in response
to a particular spatial frequency; thus a different pro-
cess has to be adopted for every opponent color chan-
nel. This suggests that different αj functions have to be
defined for every opponent channel. However, and as a
first approximation, in this work all opponent color chan-
nels are treated equally.

Neighborhood integration and remote enhancement
concepts have been proposed by several authors.2,3,11

Each of these models takes into account the effect of
close and distant regions to perform assimilation and
contrast effects, but these effects are described sepa-
rately, as independent effects and in a non-unified way.
In the wavelet model we propose, all these effects are
unified and described in a single αj function, which ex-
plicitly states that assimilation and chromatic contrast
effects can be seen as different interpretations of a
unique and single process.

A similar multiscale model has been proposed,20,21

called the ODOG model. The ODOG model also uses
center-surround information at different frequencies,
but it is formulated using anisotropic DOG (Difference
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of Gaussians) functions in a multiscale framework. The
processing of the multiscale decomposition is performed
using a linear transformation and a normalization of
the filters output. In the present model, processing of
the different frequencies is performed in a wavelet space
which contains, as a particular case, the use of isotro-
pic DOG functions as frequency filters. Furthermore,
the processing of the wavelet decomposition is performed
using a nonlinear function which includes saturation
effects.

Examples
To evaluate the performance of the proposed model, in
this section we show its behavior on two different types
of images, synthetic and natural images.

Synthetic Images
One of the synthetic images is shown in Fig. 1, and its
perceptual image is shown in Fig. 3. Profiles from a row
of these two images are shown in Fig. 3(a). To ease the
visualization of this example, the RGB values are shown
instead of the opponent values. As shown in these pro-
files, high frequency features are blurred producing an

almost uniform color, which is shown as a reduction of
the radiometric range values. In the low frequency fea-
tures from the right half of the image, situation is the
opposite: wide stripes present a chromatic contrast ef-
fect, shown as an increased radiometric distance be-
tween them.

A set of synthetic images, shown in Fig. 4, were cre-
ated to test the behavior of the model. All gratings con-
tain the same number of red, green, blue and yellow
bars, but the spatial distribution in every image is dif-
ferent. Particularly, in Figs. 4(a) and 4(b) yellow and
red bars are interchanged; in Figs. 4(c) and 4(d) yellow,
green, and blue bars are interchanged, but red bars are
preserved.

The obtained perceptual images applying the model
proposed in Eq. (15), are shown in Fig. 5. Pixels of the
perceptual images from Fig. 5 are shown in the 3-di-
mensional RGB space in Fig. 6. The distribution of the
pixels of the original images in RGB space is the same
for all of them, because the only difference between the
images is the spatial distribution, not their color. Since
there are only four colors, i.e., yellow, green, red and
blue, we do not show this distribution because it is de-

Figure 3. (a) Perceptual image of Fig. 1, taking jthr = 2; and (b) profiles of a row from the original image (top) in Fig. 1 and the
perceptual image (bottom). Supplemental Material—Figure 3 can be found in color on the IS&T website (www.imaging.org) for a
period of no less than two years from the date of publication.

(a)

(b)
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fined by just four values in 3-dimensional RGB space,
and such a distribution is difficult to see. As expected,
the final RGB pixel distributions of the perceptual im-
ages are different, because spatial distribution defines
the chromatic induction process. Every different spa-
tial distribution of color gratings will produce different
final colors, hence it will produce different RGB color
distributions. When the patterns are arranged in such
a way that global spectral frequency can decrease, then
chromatic contrast is applied, and an sparser color dis-
tribution is obtained, as is shown in Fig. 6(b).

Natural Scenes
Several images from different natural scenes have also
been studied. Since every type of image is used in differ-

ent real situations (art, industry, etc.), different chal-
lenges are presented to the method. These images are
used to compare the behavior of the usual Gaussian scale-
space representation,3 obtained by applying Gaussian
filters to the original image to the wavelet based pro-
posed method. Using a Gaussian scale-space representa-
tion, we aim to obtain the perceived images when the
original image is observed at increasing distances. At
close observation distances, image sharpening should be
performed trying to simulate a chromatic contrast effect.
At increasing distances, chromatic contrast effect is re-
duced and chromatic assimilation is increased.

An image from a painting is shown in Fig. 7, its
Gaussian scale-space representation is shown in Fig. 8,
and the wavelet based perceptual images are shown in

(a) (b) (c) (d)

Figure 5. Perceptual images of the corresponding original images in Fig. 4. Supplemental Material—Figure  5 can be found in
color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.

(a) (b) (c) (d)
Figure 4. Set of synthetic images. All the images contain the same number of red, green, blue, and yellow bars, but with differ-
ent spatial distribution.Supplemental Material—Figure 4 can be found in color on the IS&T website (www.imaging.org) for a period
of no less than two years from the date of publication.

(a) (b) (c) (d)
Figure 6. Color representation in the RGB space of the corresponding perceptual images in Fig. 5. Supplemental Material—Figure
6 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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Fig. 9. Images from the Gaussian scale-space were ob-
tained using Gaussian filters with increasing standard
deviation. Wavelet based images were obtained with in-
creasing values of jthr.

As can be seen, images from the Gaussian scale-space
show only the blurring process associated to the chro-
matic assimilation effect, but wavelet based images are
simultaneously blurred and sharpened. For example, the
wavelet based perceptual images show enhanced colors
and, at the same time, a blurred appearance on the
smaller features. A detail of wavelet based and Gaussian
based perceptual images is shown in Fig. 10. The wave-
let based perceptual image shows redder and more yel-
low details than the corresponding Gaussian based
image, but the same degree of blurring has been applied
to small features.

A different situation is presented in the images shown
in Fig. 11(a). This is an image taken from a paper printed
with a wood grain pattern. Segmentation is required in
order to calibrate separately the composition of the inks.
In this situation, an image sharpening would produce
an image that would be easier to segment. To perform
pure image sharpening without image blurring, i.e.,
chromatic contrast without chromatic assimilation, the
wavelet based model simply takes jthr = 0, i.e., a close
observation distance. The resulting image is shown in
Fig. 11(b).

Another different type of image is shown in Fig. 12(a).
This textile is made of many different color fibers, and
we want to estimate the perceived color in some areas
of the image when observing the textile from a certain
distance. It implies we want to ignore the color of indi-
vidual fibers and threads. A wavelet based perceptual
image is shown in Fig. 12(b). We can see that colors of
individual fibers are similar to that of the surrounding
fibers, and at the same time dark grains show an in-
creased contrast compared to surrounding areas. The
method allows us to perform color measurement on such
a textured image.

In the example in Fig. 13, fine grains in the stone are
blurred but general contrast of wider features are en-
hanced. In Figs. 14 and 15 we can see some further ex-
amples with synthetic images. In Figs. 14(a) and 14(b)

Figure 7. Original image of a painting. Supplemental Material—
Figure 7 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the
date of publication.

(a)

(b)

(c)

Figure 8. Gaussian scale-space representation of painting im-
age obtained with Gaussian based filters. Observation distance
is increased from (a) to (c). Standard deviation of Gaussian
kernels are σ = 1.0, 2.0 and 3.0, respectively for every image.
Supplemental Material—Figure 8 can be found in color on the
IS&T website (www.imaging.org) for a period of no less than two
years from the date of publication.
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(a)

(b)

(c)

Figure 9. Perceptual representation of paintings obtained by
the wavelet based method. Observation distance is increased
from (a) to (c). Induction thresholds used are jthr = 2, 3 and 4,
respectively for every image. Supplemental Material—Figure 9
can be found in color on the IS&T website (www.imaging.org) for
a period of no less than two years from the date of publication.

(a)
(b)

Figure 10. (a) Detail of image from the wavelet based percep-
tual image in Fig. 9(b); and (b) detail of image from the
Gaussian scale-space representation in Fig. 8(b). Supplemen-
tal Material—Figure 10 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the
date of publication.

Figure 11. (a) Original image of simulated wood; and (b) per-
ceptual image obtained with the proposed method when ob-
served at short distance, e.g. ,  j thr = 0.  Supplemental
Material—Figure 11 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the
date of publication.

(a)

(b)
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(a)

Figure 13. (a) Image of stone; and (b) perceptual image using
jthr = 1. Supplemental Material—Figure 13 can be found in color
on the IS&T website (www.imaging.org) for a period of no less
than two years from the date of publication.

Figure 12. (a) Image of fabric textile; and (b) perceptual im-
age using jthr = 1. Supplemental Material—Figure 12 can be found
in color on the IS&T website (www.imaging.org) for a period of
no less than two years from the date of publication.

(a) (b)

(c) (d)
Figure 14. (a) Synthetic image; (b) perceptual image using jthr = 4; (c) detail of image (a); and (d) corresponding detail of image
(b). Supplemental Material—Figure 14 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two
years from the date of publication.

(a)

(b) (b)
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we can see original and perceptual images. In Figs. 14(c)
and 14(d) we show some details from them. We can see
that the most noisy areas are completely blurred, and,
in the Supplemental Material, that some new colors ap-
pear as a consequence of the assimilation process be-
tween some color features. Wider features show greater
contrast with respect to the surrounding areas. The
same behavior is observed in Figs. 15(a) and 15(b).

Conclusions
Features at different spatial scale or resolution, i.e., fea-
tures with different frequency information, induce dif-

ferent chromatic induction effects. The model presented
in this article uses a multiresolution wavelet framework
that defines these different chromatic induction effects
in a unified mathematical function, and allows us to
implement both induction effects using a single percep-
tual operator. We have shown how the proposed model
predicts the expected behavior on synthetic images. We
also present some examples of practical applications
where building perceived images may allow solution of
problems of color measurement on textured images.  
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