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Abstract

The aim of this paper is to outline a perceptual approach to a computational colour–texture

representation based on some colour induction phenomena. The extension of classical grey level

methods for texture processing to the RGB channels of the corresponding colour texture is not

the best solution to simulate human perception. Chromatic inductionmechanisms of the human

visual system, that has been widely studied in psychophysics, play an important role when look-

ing at scenes where the spatial frequency is high as it occurs on texture images. Besides others,

chromatic induction includes two complementary effects: chromatic assimilation and chromatic

contrast. While the former has been measured by Wandell and Zhang [A spatial extension of

CIELAB for digital colour image reproduction, in: SID, 1996] and extended to computer vision

by Petrou et al. [Perceptual smoothing and segmentation of colour textures, in: 5th European

Conference on Computer Vision, Freiburg, Germany, 1998, pp. 623] as a perceptual blurring,

someaspects on the last one still remain to bemeasured, but it has to be a computational operator

that simulates the contrast induction phenomenon performing a perceptual sharpening that pre-

serves the structural properties of the texture. Applying both, the perceptual sharpening and the

perceptual blurring, we propose to build a tower of images as an induction front-end that can be

the basis of a perceptual representation of colour–textures.
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1. Introduction

Any scene of the world is projected on our retina as a map of different regions that

are the projections of 3D surfaces. The properties of these projections are derived

from the position and orientation of the surfaces in the scene, the observer location,
and the light that provoke the neuronal excitation of the visual system. In computer

vision, people usually deal with a set of surface properties, shape, orientation, colour,

and texture. In this work we will only deal with the last two and their dependency on

the final perception.

Although both are inherent properties of surfaces, these two visual cues have usu-

ally been studied separately [3,4]. This is probably due to their usual representations,

while colour is a point feature given by the value of a pixel in several bands or chan-

nels, texture has to be modelled as a spatial relationship of the point with its neigh-
bours. In Fig. 1 we see the RGB channels of a colour image, we can observe that the

spatial information perceived from the colour image does not appear as it is in any of

the channels. Therefore specific representations have to be built in order to deal with

both cues at the same time.

The study of colour–texture representations has received increasing attention. The

objective of many researchers has been to find co-joint representations of spatial and

chromatic information which capture the spatial dependencies (in particular, corre-

lation) within and among spectral bands. One of the most frequent approaches is to
define a feature vector joining grey level texture features and colour features [5,6].

Another one is to extend classical texture models, such as Markov Random fields

and the autocorrelation function, in order to deal with multichannel images [7,8],

or wavelet analysis extended to colour images by combining the results in colour

channels [9]. Other works, like [10], convert RGB values into a single code from

which texture measurements are computed as if it were a grey scale image. Spatio-

chromatic representations are computed in [11,12] over the smoothed Laplacian of

the image, and the structural tensor that is usually used to represent local texture
properties is extended to colour images in [13].

However, we want to highlight the approach presented in [2,14] that is based

on known perceptual mechanisms of the human visual system. Colour–texture
Fig. 1. (A) A colour image; (B) red channel of (A); (C) green channel of (A); and (D) blue channel of (A).

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this paper.)



94 M. Vanrell et al. / Computer Vision and Image Understanding 94 (2004) 92–114
interaction is represented as a perceptual blurring which depends on the spatial fre-

quency of the coloured patterns and the observer position. This approach is based on

important conclusions from psychophysical works on colour–texture interaction

[1,15–18]. We will review the details of this perceptual blurring in Section 5.

Following on from this prior work, in this paper we propose a global percep-
tual approach of colour–texture representation that combines the introduced

perceptual blurring with a first approach to a perceptual sharpening. The combi-

nation of these two operators can simulate the visual process of colour–texture

perception with the colour induction mechanisms produced by different spatial

frequencies.

To this end, in Sections 2 and 3 we give, separately, the basis of computational

representations of colour–texture. In Section 4 we briefly introduce the colour

induction mechanisms and their relationship to spatial frequency. Section 5 explains
the essentials of perceptual blurring that simulates chromatic assimilation, and in

Section 6 we introduce a perceptual sharpening that simulates the colour contrast

phenomenon. In Section 7 we consider colour–texture perception as a visual pro-

cess that integrates both induction mechanisms, this will be the basis for a global

representation of colour–texture that is introduced in Section 8. Finally, in Sec-

tion 9 we discuss some properties of the inductors operators and the advantages

of using them in computing textural properties and in Section 10 we summarise

the open problems that still remain in order to complete the proposed computa-
tional model.
2. Colour

Colour is the visual cue derived from the human visual processing of the electro-

magnetic radiation that reaches the retina. This process can be seen as a change in

representation, which, in general, implies a dimensionality reduction. Although col-
our was not given much importance in the first decades of computer vision, since

most previous work has been undertaken on grey-level images, the situation has

changed and colour has become a very important visual cue for most of the vision

tasks, such as object recognition [19], image indexing [20], tracking [21], shape ex-

traction from colour variations [22], etc.

A computational representation can be easily built by a 3D representation.

A wide range of different spaces can be used: device-dependent spaces are the most

common in computer vision, this is the case of the RGB provided by any digitalisa-
tion process; other common representations are those perceptually correlated with

colour properties, e.g. HLS; recently, different versions of physiologically based

spaces try to provide the colour-opponency first described by Hering and finally

demonstrated by Hurvich and Jameson [23]; from colour science and for calibrated

conditions there are uniform spaces such as CIELAB or CIELUV [24] where Euclid-

ean distances agrees with similarity judgements; finally, invariant spaces try to deal

with colour representations that present invariance properties to the light and geom-

etry of the scene conditions [8,19,25].
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3. Texture

Texture is the visual cue derived from non-homogeneous surfaces in scenes. De-

pending on the surface reflectance, positioning of the observer, and lighting condi-

tions, we can obtain different texture images from the same surface. Although
there are some recent works dealing with the recovery of the physical reflectance

properties of a texture [26,27] and some other works that have recovered 3D shape

information from texture [28,29], the most traditional approach in computer vision

has been the analysis of texture images without taking any consideration on the im-

age formation process. Extensive reviews can be found in [4,30–32], where it is shown

that texture has been studied for different purposes such as segmentation, classifica-

tion or synthesis. Despite the large number of works, there is still a lack of a standard

texture definition and does not exist a widely accepted texture representation space,
as it exists for colour. Interesting work intended to define a standard texture space

based on perceptual considerations should be considered [33–35], since such work

could establish the basis of a standard computational representation. Before we go

deeply into computational representations we will do a short inside on psychophysics

theories on texture perception, that have been the basis for some of the works in

computer vision.

In psychophysics, the aim has been to understand how the human visual system

represents textures and which are the mechanisms used for texture segregation. Tex-
ture is one of the most complex visual cues and for the moment there is not a un-

iquely accepted theory. Two basic approaches are confronted as being the basis

for a visual internal representation of texture. On one hand, a local feature extrac-

tion process has been supported by the Julesz�s texton theory [36], and on the other

hand a global spatial frequency analysis seems to be indispensable as it has been

demonstrated by Beck et al. [37]. Let us go deeply in these two approaches.

The first approach, the Julesz�s texton theory is based on the fact that differences

between two textures, are due to differences in the first order statistics, or densities, of
the texton attributes, it ignores the positional relationships between adjacent textons.

Texton attributes are defined as the blob properties, these are, size and contrast for

general blobs, and orientation for elongated blobs. Other textons can be line endings

or terminators, but a more exhaustive list of texton has not been developed yet.

Although all the texton theory conclusions are based on psychophysical experiments,

Julesz associates the feature extractors with simple or complex cortical receptive

fields described by Hubel and Wiesel [38].

The second approach, led by Beck et al. [37] and supported by other researchers
[39,40] advocates that, differences in first order statistics of local properties indepen-

dently of the blob arrangement is not enough to be able to capture the segregation of

textures, since in a wide range of cases, differences are due to patterns emerging from

the different arrangements of image blobs. In these cases a global spatial-frequency

analysis is needed in order to represent different textures.

In Fig. 2 we demonstrate the complementary character of these two approaches.

While the textures (A) and (B) can be easily differentiated in the frame of the Julesz�s
texton theory due to differences in blob contrast; textures (B) and (C) are equal



Fig. 2. Examples of textures formed by simple blobs and their emergent patterns.
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according to this theory, since there is no difference in terms of texton attributes. Dif-

ferences between textures (B) and (C) can be easily derived in the frame of a global

frequency analysis, for which a difference in emergent orientations can be considered.

Therefore, any texture representation will have to combine both, global and local
properties.
4. Colour induction

Colour induction are the colour phenomena that changes the colour appearance

of a stimulus due to the influence of the scene contents in the field of view. There are

different types of induction phenomena such as colour adaptation, colour assimila-
tion or colour contrast amongst others.

Colour adaptation is involved in any scene interpretation and occurs when scene

colours are perceived without being affected by the illuminant influence, this ability

presented by the HVS has been modelled in computer vision by different colour con-

stancy methods [41–43] that usually imply global image transformations.

Colour assimilation does not depend on global colour illuminant effects but on the

direct surrounding colour of a certain stimulus [44], this surrounding colour is usu-

ally called the inducing stimuli or inductor. As colour assimilation, colour contrast
does depend on the direct surrounding colour acting as an inductor, but it can also

depend on remote inductors acting as a global colour illuminant [45–47]. In this

work, and because we are on defining a colour–texture model, we will deal with those

induction mechanisms that only depend on the direct surround. Thus we assume that

inductor stimuli are only based on contrast edges of the surround and therefore we

will regard to dependencies on local spatial frequencies [48].

Without regarding to causes provoking induction, the essential difference between

the effects of contrast and assimilation mechanisms is the direction of the chromatic
change provoked by the inductor, in this case, the surrounding colour [49].

Colour contrast occurs when the chromaticity of the test stimulus changes away

from the chromaticity of the inducing stimulus, an example of this effect can be seen

in Fig. 3A, where we can see how a given test stimulus, T, is perceived as P1 when

surrounded by S1 and as P2 when surrounded by S2, that is, P1 is closer to S2 and P2

is closer to S1.



Fig. 3. Colour induction. (A) Chromatic contrast; (B) chromatic assimilation.
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Colour assimilation occurs when the chromaticity of the test stimulus changes to-

wards the chromaticity of the inducing stimulus, assimilation effects are shown in

Fig. 3B, 1 where we can see how a given test stimulus, T, is perceived as P1 when
surrounded by S1 and as P2 when surrounded by S2, in this case P1 is closer to

S1 and P2 is closer to S2. Chromatic coordinates of these perceived samples are

shown in Fig. 4. For colour contrast, perceived stimuli moves away from the corre-

sponding surround, and for colour assimilation chromaticity moves towards the

surround.

Chromatic coordinates of these perceived samples are shown in Fig. 4. For colour

contrast, perceived stimuli moves away from the corresponding surround, and for

colour assimilation chromaticity moves towards the surround.
Considering the given definitions and examples, it is obvious that any perceptual

approach towards a colour–texture representation should take into account the col-

our induction effects we have introduced above. In psychophysics we find a wide

range of works dealing with the induction phenomena or the influence of surround-

ing chromaticity on the appearance of colour [15–17,47,48,50–53]. In all these works,

the authors present different aspects of colour human induction measurements. The

influence from direct surrounds or remote inducers, the asymmetry of the measure-

ments due to changes from luminance or the dependency on spatial frequency of pat-
terns are some of the aspects that are measured and analysed. Conclusions from all

these measurements help to provide answers about how the perceptual mechanisms

are organised in the human visual system. They help in building a more precise mod-

el of how the human visual system acts from the retinal representation of colour to

the final judgements of colour appearance. Considerations are done in terms of dif-

ferent physiological aspects as cone absorption rates and their retinal distribution,

optical chromatic aberrations or the existence of opponent-colour signals in the

visual pathways.
1 Appearance of colours can vary depending on the printing device and therefore the induction effects

may vary substantially if images are not exactly reproduced.



Fig. 4. Chromatic coordinates. (A) Chromatic contrast; (B) chromatic assimilation.
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The most interesting conclusions derived from all these works and from a com-

puter vision point of view can be summarised in the two following points:

1. Changes in colour appearance due to the spatial frequency of patterns can be

described by a two-step pattern–colour separable model [16,17]:

First step. A colour transformation to a new coordinate space that is indepen-
dent of the image content. The best correspondence of the derived data is

achieved by the opponent-colour transformation that occurs in the first steps

of the visual pathways [23].

Second step. In the new coordinate frame, colour representation is transformed

by a gain factor that is dependent on the image content, and it is different in

each colour channel.

2. The relationship between spatial frequency and the two types of colour induction

can be summarised as follows [48,54]:
Transition frequency. A spatial frequency of 4 cpd is a transition frequency

from assimilation induction to contrast induction.

Extreme frequencies. Spatial frequencies at 9 and 0.7 cpd assures assimilation

and contrast induction, respectively, for any inductor.

Frequency measures are given in cpd units (cycles per degree) that represents the

number of cycles for 1� of visual angle. Visual angle is a common way to express a

spatial measure which can include the effect of viewing distance and the size of the

stimulus. In Fig. 5, we can see coloured square-wave patterns at different spatial
frequencies. These plots correspond to an image subtending 6� of visual angle when
observed at a distance of 30 cm. 2 From 0.5 to 1 cpd we can perceive images with

two-coloured bars, blue and yellow, their colour perception is stressed by the colour

contrast phenomenon due to a low spatial frequency. When the frequency increases

we tend not to perceive separate blobs but a global colour that is the result of the two

basic colours plus the frequency effect.
2 We have considered 30 cm as a usual distance to be located while reading a paper.



Fig. 5. Colour Induction at different spatial frequencies. Frequencies are computed by considering

observer position at 30 cm from the image. Images are displayed on 6� of visual angle.
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5. Colour assimilation as a perceptual blurring

A computational model of colour assimilation has already been given by an

isotropic blurring of an image on the opponent-colour space, this has been proposed

by Petrou et al. [2] as a perceptual blurring. Colour assimilation effects were first
measured by Wandell et al. [1], where they take perceptual measurements of quality

on printed patterns. To achieve this goal, they propose the Spatial-CIELAB space that

is given by a two-steps process: an opponent colour channel transformation and a spa-

tial blurring of the image channels. The blurring process convolves the image channels

with kernels formed by weighted sum of exponential functions. In this way, they build

a perceptual representation of a colour image presenting the assimilation effect of the

HVS. This assimilation operator applied to an image, I inXYZ coordinates, is given by
AssðIÞ~r~x ¼ CIELABðBðOppðIÞ; ~x;~rÞÞ ð1Þ

that is finally transformed to the CIELAB space to deal with colour reproduction

error measurement. The blurring operator is defined as
BðI ; ~x;~rÞ ¼ ðB1;B2;B3Þ where Bc ¼ Ic � fc; ð2Þ

where Ic is the cth channel of a colour image I , and the function
fc ¼ mc

X
i

xiEi : Ei ¼ ki exp
x2 þ y2

r2
i

� �
; ð3Þ
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where c represent each of the three opponent channels, mc is a scale factor chosen to

make the kernel fc sum to one and ki, is again a factor scale selected to make Ei sum

to 1. The values of xi and ri have been determined from psychophysical measure-

ments [1], xi are fixed values and ri are given in degrees of visual angles, thus,

depending on the observer position we have
rpixels ¼ d � R
S
� tanðrdegreesÞ ð4Þ
where d is the observer distance to the texture, S is the length of one edge of the area
where the image is displayed, and R is the number of pixels of image I along S, in
Fig. 6, we can see an scheme of this unit conversion process, the size of the kernels is

always built to cover the area of 1� of visual angle. An approximation of the profiles

of these isotropic filters is shown in Fig. 7, where the filters have been built for

an image of 550 pixels, displayed on a visual field of 20 cm per edge and observed

from 40 cm.

Taking into account the previous conversion expressions we can redefine the

assimilation operator as a function of the observer distance:
AssðI ; dÞ ¼ AssðIÞ~r~x: ð5Þ

To illustrate how this transformation behaves on a given image we show in Fig. 8

the results of applying the Spatial-CIELAB transformation on two images (A) and

(B), presenting an important colour assimilation effect. We can see on the profiles

below, how the Spatial-CIELAB transformation makes the green-blue band to

become bluish when it is surrounded by blue and to become reddish when surrounded

by red. Then, images (C) and (D) are the images that presents the assimilation effect.
It is important to note that when looking at these images an assimilation effect is also
Fig. 6. General scheme for unit conversion from visual angle to image pixels.



Fig. 7. Example of profiles of the 2D symmetric filters for the Spatial-CIELAB. Black, red, and blue

colour lines represent the kernel for the intensity, red-green, and yellow-blue channel, respectively. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this paper.)
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present. To interpret these images we should point out that the isolated colours of

the centre band are the colours that we perceive in the central bands of the original

images.

Perceptually blurred images will be the basis for global measurements of colour–

texture images, due to the fact that they represent the perceived colour appearance of

textured images containing high spatial frequencies and viewed from a long distance.
6. Colour contrast as a perceptual sharpening

As we have already explained in Section 4, colour contrast is a complementary

mechanism to colour assimilation. Colour contrast arises on regions of low spatial

frequency and shifts the chromaticity of the stimulus in a direction away from the

chromaticity of the surround. In this section we define a computational operator that

simulates the colour contrast phenomenon.
This operator enhances differences in the transitions among colours of regions

presenting low frequencies. While the assimilation effect has been solved by a blur-

ring operator, it seems quite natural that the contrast effect will have to be solved

by a sharpening operator. A detailed discussion of different colour sharpening oper-

ators can be found in [55].

To this purpose we define a sharpening operator, taking as a basis one of the most

common sharpening operators [56], that is given by
SðI ; c; rÞ ¼ ðSR; SG; SBÞ where Sc ¼ Ic � cLoGrðIcÞ; ð6Þ



Fig. 8. (A,B) Examples of two images presenting important assimilation effects. (C,D) Previous images

transformed by Spatial-CIELAB. (E–H) are the RGB profiles of images (A–D), respectively.
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where Ic is the cth channel of a colour image I , usually given by an RGB repre-

sentation, c is a constant controlling the amount of enhancement and LoGrðIcÞ is the
Laplacian of the image Ic blurred with a Gaussian, that is, convolved with the
function
r2Gr ¼ � 1

pr4
1

�
� x2 þ y2

2r2

�
exp

�
� x2 þ y2

2r2

�
: ð7Þ
One of the problems with this operator is that colour artifacts might appear.

A possible solution is to change to a new space where one of the channels is the

intensity information and, then, to apply the sharpening operator to this channel
and transform the obtained image to the RGB space. In this case, chromatic contrast

is not involved, only brightness contrast is achieved. However, when the sharpening

is applied to the RGB channels of the image it is a common practice to maintain the

same parameters for all the channels. It is known that filtering the intensity channel

by a certain blurring kernel has a more important effect than doing the same process

on the chromatic channels [57].

Considering the conclusions on pattern–colour separability presented in Section 4

an inductor operator should act on an opponent-colour space. Then, an inductor
operator that implements a chromatic contrast will be denoted by Con, and defined as
ConðIÞ~r~c ¼ RGBðSðOppðIÞ;~c;~rÞÞ; ð8Þ
where S is a sharpening operator that is applied to each channel of the image and

which has parameters ci and ri where i corresponds to the ith channel of the image.
These parameters act as independent gain factors for each channel.

Based on the classical sharpening defined by S, and taking into account the con-

siderations about simultaneous contrast done in the work of Grossberg and Todoro-

vic [58], we propose a sharpening that will allow to simulate chromatic contrast

induction. This is a psychophysical work on brightness contrast based on on–off lat-

eral geniculate cells, modelling responses in the boundary contour system by a sum
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of exponential functions that is nearly equivalent to the Laplacian of Gaussian. They

describe a Diffusive Filling-In process to perform the brightness percept. It is done by

a set of contiguous connected biological cells that pass signals between each other.

The cell activity can spread to neighbouring cells, then to neighbours of the neigh-

bours, and so on. This process is inhibited by Boundary Contour Units, that is,
they decrease the diffusion constant by reducing the electrical activity between cell

membranes.

Inspired on these ideas, this process can be computationally performed by an in-

terpolation process of some kind of boundary detector signal. To clarify the process

we will apply it to the 1D signal depicted in Fig. 9A. In the next paragraphs we will

explain how to simulate this process with a computational procedure.

In order to simulate the described process on a Ic image, we firstly need to identify

its inhibited and activated areas, whichever the colour channel is being analysed.
When applied, for example, to the red–green dimension, the active areas will be

the reddish ones and the inhibited areas the greenish ones. Computationally it is

equivalent to the intensity of the stimulus. In the preceding example a red area is

positive and a green area negative. However, following [58], the final response at a

given pixel depends on the colours around it. There will be positive and negative

responses when comparing against its surround. A yellow area is a negative area

when its surround is red but positive when green.

Filtering the image with a Laplacian operator is well suited to such situations, since
its response is positive in the transition betweendark and light, andnegative in the tran-

sition from light to dark. The result of this step on a 1D example is shown in Fig. 9B.

We will exploit the fact that the result of convolving Ic with a Laplacian operator

represents its edge locations by zero crossings, i.e., a change between positive an neg-

ative response or vice versa. These are usually represented by the maximum and min-

imum of the border responses having different sign. Because they might not be

adjacent, the zero-crossing detection must be done in a small neighbourhood (i.e.,

3� 3) around the actual zero-crossing. In this way we assure to obtain the zero-
crossing in their maximum and minimum values of the LoGðIcÞ.

Let us call ZðIcÞ the binary image having 1 at those points where there is a zero-

crossing in the image Ic. Fig. 9C shows the location of the zero-crossings (i.e., ZðIcÞ)
in red dots.

For subsequent processes, here we need to add to ZðIcÞ the points on the image

frame. This will allow to extent the next operator effect all over the image.

Once we have built the inhibition/activation areas of Ic, represented by ZðIcÞ, now
we can easily obtain the energy of this points by computing an image product
ZðIcÞ � LoGðIcÞ. In the example these are the red dots in Fig. 9D.

The following step is to build a surface where its value in a certain point will

indicate the level of activation of this point and is the result of a spreading process

on the inhibition/activation areas. It must have some properties:

1. The points on the boundaries must preserve its energy, i.e., the relationship

between adjacent regions must be maintained.

2. The number of zero-crossings between points of the boundaries must be pre-

served, i.e., there will not be more regions than in the input energy image.



Fig. 9. Example of the process of perceptual sharpening operator on a 1D signal. (A) The original signal.

(B) The Laplacian of Gaussian of (A). (C) Marks in red dots the position of the zero-crossing points of (B)

represented in the ZðIcÞ image in text, these values are set to 1. (D) The result of interpolating the signal of

the Laplacian of Gaussian on the previous points over the whole signal. It correspond to the IððCÞ; ðBÞÞ
operator. (E) Plots, in blue line, the original signal and, in red line, the correction factor multiplied by the

parameter c i.e., ccSLoGðIc;rcÞ in Eq. (10). (F) Plots the final result Sc (in red) versus the original signal (in

blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this paper.)
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Let us call IðX ; Y Þ the operator that constructs this surface from the energies of a

set of boundary points which are those having 1 value in image X and whose activa-

tion energy is given by its corresponding position in Y .
To build this surface an immediate solution is to use some kind of surface inter-

polation. For simplicity and because it copes with the above mentioned restrictions

we will use linear interpolation. The problem of interpolation is that it needs to have
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equally spaced signal samples. This is not the case of the zero-crossings. To solve this

point we use a Delaunay triangularisation as a previous step to achieve a uniform

spaced set of points. For an intuitive and non-rigorous idea on how it works we

can say that we need to generate the best triangles among the input data points,

and to interpolate their values across the triangle plane.
Then, for a given channel Ic
Fig. 1

of ima
SLoGðIc; rÞ ¼ IðZðIcÞ; LoGðIc; rÞÞ ð9Þ

is the spread of LoGðIcÞ. In Fig. 9D we can see a profile in blue of how it behaves.

Following the same schema as in the classical sharpening operator of Eq. (6) we

define the operator S of a colour image, I , as
SðI ;~c;~rÞ ¼ ðS1;S2;S3Þ where Sc ¼ Ic � ccSLoGðIc; rcÞ ð10Þ

and it runs the following steps:

Step 1. Transform the image to the opponent colour representation.

Step 2. For each channel c:
1. compute the Laplacian of Gaussian of sigma rc,

2. interpolate the responses at the edges of regions inside them,

3. subtract 2.2 from channel c of step 1 given a weight cc.
Step 3. Return to the original colour representation.

The parameters~c and ~r play an important role for an inductor operator, we can

roughly explain that ~r parameter selects the boundaries or the scale of the regions

that will be preserved by the chromatic contrast effect, and~c parameter fix the gain

of the induction effect.

To fix their values to define a perceptual operator further psychophysical mea-

surements are required from those given in [48]. However there are strong relation-

ships between them. Values for~c depend on the spatial frequency of the image. The
0. (A) Original image, (C) perceptual sharpening of (A). (B,D) present a profile of an horizontal line

ges (A,C), respectively.
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spatial frequency depends on the observer distance to the image. The observer dis-

tance implies to select more or less image details that is provided by the~r parameter.

Above considerations allow to redefine the contrast induction operator as a function

of the observer distance, that is
Fig. 1

percep
ConðI ; dÞ ¼ ConðIÞ~r~c : ð11Þ
Fig. 10 shows the effects of the perceptual sharpening on a synthetic image and the

corresponding profiles of an image line. On the other hand, Figs. 11 and 12 show the

result of this sharpening on four natural images.
7. Colour–texture perception as a visual process

In Sections 2 and 3 we have explained, respectively, how colour and texture

can be computationally represented as separate cues. However, we need to
1. (A,C) Original images (Vistex:Flowers.0001, Vistex:Leaves.0005). (B,D) Results of the

tual sharpening on (A,C), respectively.



Fig. 12. (A,C) Original images (from a Canon Ixus digital camera, Vistex scene:Corridor.0000). (B,D)

Results of the perceptual sharpening on (A,C), respectively.
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work on images from real world, which is neither a grey world, nor a Mondrian

world.

In Section 4 we have briefly introduced the colour induction phenomenon that

explains how colour changes depend on spatial frequencies, and how opponency
can represent these interactions. These perceptual considerations can be simulated

with two types of computational operators, first we have explained in Section 5

the perceptual blurring which enables us to model the colour of a surface corre-

sponding to a texture with high spatial frequency properties, second, we have

explained in Section 6 a perceptual sharpening which enables us to model the colour

of a surface corresponding to a texture with low spatial frequencies.

The spatial frequency is not an inherent property of a texture, it is the result of

a vision process, that can be achieved by a successive change on the observing
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conditions. It can be achieved by changing from a peripheral to foveal vision, or

simply by moving the observer position. Consequently, a perceptual representation

of a colour–texture will have to be represented by the tower of images that simulates

this vision process. This approach has already been proposed by Petrou et al. [2] as

perceptual tower.
In this work we propose to complete this perceptual tower by adding the colour

representation of textures when spatial frequencies are lower than 4 cpd, which is the

threshold measured by Smith et al in [48] as the threshold frequency from colour

assimilation to colour contrast in normal colour observers.
8. A computational colour–texture model

Considering the assumptions done in the previous section, we now define the com-

plete perceptual tower which we intend as a general perceptual representation of col-

oured textures. Therefore, for a given image we can build a perceptual tower

representing colour information as it was observed from different observer distances.

It can be considered as a colour–texture front-end representing colour–texture inter-

action and the basic step for further processing, a parallel approach to a scale-space

representation for grey-level images [59].

For a given texture image, I , we can estimate a predominant spatial frequency
from its Fourier spectrum, that is denoted as mcpp, and can be obtained by computing
mcpp ¼ m : BPHðmÞ ¼ maxðBPHðFSðIÞÞÞ; ð12Þ

where FS is the Fourier spectrum of an image, and BPH is its frequency energy

histogram. Frequency is given in cycles per pixel (cpp) units, and then we can get this

spatial frequency in cpd, mcpd, by using this conversion expression:
Fig. 13. General scheme of the colour–texture front-end.



Fig. 1

(A) Sy

VisTex

er spat
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mcpd ¼ mcpp �
R

a tanðSdÞ
ð13Þ
where d is the observer distance to the texture, S is the length of one edge of the area

where the image is displayed, and R is the number of pixels of image I along S. By
considering this expression we can build a perceptual tower by computing:
4. Examples of perceptual towers. Columns present the perceptual towers for three different images.

nthetic image, the original image present a 4 cpd frequency when observed at 30 cm. (B) Image from

dataset presenting spatial frequency similar to (A). (C) Image from VisTex dataset presenting high-

ial frequency than (A,B).
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T ðIÞdi ¼
ConðI ; diÞ for di 2 ð0; ddÞ;
AssðI ; diÞ for di 2 ðdd;þ1Þ;

�
ð14Þ
where dd is the observer distance that makes mcpd ¼ 4cpd, that is the threshold fre-

quency that changes from chromatic contrast to assimilation, as has been measured

in [48], it is given by
dd ¼
S

tanðR � mcpp
4
Þ : ð15Þ
The perceptual tower will provide the colour appearance according to the spatial

frequency of the image content and related to the observer position. Fig. 13 shows a

general scheme of the proposed colour–texture front-end that acts as a scale-space

representation of a colour image, but representing the interaction between colour

and spatial frequencies in a perceptual sense.

In Fig. 14 we can see the perceptual tower for three different images. For images in

which assimilation occurs we can consider the representation to be a true perceptual

representation since it is based on psychophysical studies of assimilation. However,
no similar studies of chromatic contrast have been conducted and so for images in

which contrast occurs, the representation is not truly perceptual. We can see how

the assimilation process blur the images when distance increase and how colour

regions are enhanced when distance decrease.
9. Discussion

In this paper we outlined a framework to deal with the interaction between texture

and colour in a perceptual sense. Our contribution extends previous working [2] by

incorporating into the perceptual tower an inductor operator, perceptual sharpening,

which models the effect of chromatic contrast (a complementary effect to assimilation

which is modelled by perceptual blurring).

Combining these two operators we can build a global framework that acts as a

primal sketch for colour representation. This perceptual tower can provide a compu-

tational representation of colour appearance. It requires the psychophysical mea-
surements of the chromatic contrast effects.

Both operators present an essential property, due to they are applied on an oppo-

nent-colour space, it allows to act more selectively on the brightness or chromatic

information simulating the HVS pathways. This cannot be achieved when a multi-

scale filtering is applied on the RGB channels of images.

On the other hand, the way in which the perceptual sharpening is defined im-

plies that it does not break structural properties of the image blobs. This will be

an essential property for texture analysis, due to the need of finding global den-
sity of the blob attributes, as it is stated by the Julesz texton theory presented in

Section 3. In this sense, perceptual sharpening provides a real contribution in the

blob segmentation step, avoiding usual refinements to the zero-crossings of the



Fig. 15. (A) Original image; (B) projected histogram of image (A); (C) perceptual sharpening of image (A);

and (D) projected histogram of image (C).
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Laplacian [60]. In Fig. 15 we can see how the perceptual sharpening changes the

colour histogram providing a clear definition of colour clusters that will contrib-

ute to get a better segmentation of blobs as the first step to compute their attri-
butes. An objective validation of this property is given in [55].

As we have introduced in Section 3, perception of textures is based on two

complementary processes, first, by computing a global density of blob attributes

and second, by computing attributes of patterns emerging globally from the texture.

Because the first step is based on results of a blob segmentation, the images of the

perceptual tower corresponding to short-distance appearance will be the basis, that

is, those images for which the perceptual sharpening has been applied can provide an

excellent representation to get blob properties. On the other hand, those images
presenting the assimilation effect can provide a global view or a long-distance view

where the emergent patterns can be better extracted.

The main advantage of this approach for computer vision applications is given

by the fact that for any colour image we can build different appearance images

representing different observations of the original one. The usefulness of this col-

our primal sketch is straightforward for subsequent visual tasks like segmenta-

tion. In more high level visual tasks, such as, content based retrieval the

perceptual tower can add some interesting refinement or subtlety to queries.
For instance, the image (A) of Fig. 12, could be retrieved from two different que-

ries in two different contexts. Thus, we could ask for someone wearing a greenish

T-shirt, or we could ask for someone wearing a stripped yellow and blue T-shirt.

Namely, we can add some nuances to any query, we can ask for a global view of

the image or we can ask for a detailed view of the image, depending on the

accuracy we require to the retrieval question.
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10. Future work

The first step to provide a full perceptual approach will require a psychophysical

measurement of chromatic contrast, this will imply a tedious task of psychophysical

experimentation. Once it is done, we will have to match the measurements with the
sharpening parameters.

In the work presented we have taken all the attention on getting induction oper-

ators presenting good properties to represent colour appearance, however we have

not taken attention to the computational cost of these operators. In this sense the

sharpening operator algorithm should be improved in future versions since the inter-

polation step is computationally expensive.

Finally, we have generally assumed a predominant spatial frequency in texture

images, however it is not always true, and therefore it can imply some changes on
computing the distance parameters of the perceptual towers.
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